Directrices sobre los sistemas de predicción por conjuntos y la predicción
Directrices sobre los sistemas de predicción por conjuntos y la predicción
NOTA DE LA EDICIÓN

OMM-Nº 1091

© Organización Meteorológica Mundial, 2012

La OMM se reserva el derecho de publicación en forma impresa, electrónica o de otro tipo y en cualquier idioma. Pueden reproducirse pasajes breves de las publicaciones de la OMM sin autorización siempre que se indique claramente la fuente completa. La correspondencia editorial, así como todas las solicitudes para publicar, reproducir o traducir la presente publicación parcial o totalmente deberán dirigirse al:

Presidente de la Junta de publicaciones
Organización Meteorológica Mundial (OMM)
7 bis, avenue de la Paix
Case postale 2300
CH-1211 Ginebra 2, Suiza
Tel.: +41 (0) 22 730 84 03
Fax: +41 (0) 22 730 80 40
Correo electrónico: publications@wmo.int

NOTA

Las denominaciones empleadas en las publicaciones de la OMM y la forma en que aparecen presentados los datos que contienen no entrañan, de parte de la Organización, juicio alguno sobre la condición jurídica de ninguno de los países, territorios, ciudades o zonas citados o de sus autoridades, ni respecto de la delimitación de sus fronteras o límites.

La mención de determinados productos o sociedades mercantiles no implica que la OMM los favorezca o recomiende con preferencia a otros análogos que no se mencionan ni se anuncian.

Las observaciones, interpretaciones y conclusiones formuladas por autores nombrados en las publicaciones de la OMM son las de los autores y no reflejan necesariamente las de la Organización ni las de sus Miembros.
ÍNDICE

11. MODELIZACIÓN DE LOS IMPACTOS DE LOS FENÓMENOS METEOROLÓGICOS SEVEROS .. 23

12. VERIFICACIÓN ... 23

13. FORMACIÓN DE PREDICTORES ... 25
1. **INTRODUCCIÓN**

Los sistemas de predicción por conjuntos son sistemas de predicción numérica del tiempo (PNT) que permiten estimar la incertidumbre de una predicción meteorológica, así como el desenlace más probable del proceso predicho. En lugar de ejecutar el modelo de PNT una sola vez (predicción determinística), se ejecuta numerosas veces partiendo de condiciones iniciales ligeramente diferentes. Con frecuencia se introduce también una ligera perturbación en los parámetros físicos del modelo, y algunos conjuntos hacen uso de más de un modelo (sistema de predicción por conjuntos multimodo), o bien utilizan un mismo modelo con diferentes combinaciones de parámetros físicos (sistema de predicción por conjuntos multiparamétricos). Debido al costo que conlleva ejecutar reiteradamente un mismo modelo de PNT, el sistema de predicción por conjuntos suele ejecutarse a aproximadamente la mitad de la resolución horizontal del modelo de PNT determinístico equivalente. El sistema de predicción por conjuntos incorpora normalmente una predicción de control basada en el modelo de resolución del conjunto, pero sin introducir perturbaciones en el análisis o en el modelo. Las distintas soluciones de PNT que integran el conjunto suelen denominarse “miembros” del conjunto. El intervalo de soluciones obtenidas de la predicción permite evaluar la incertidumbre de esta y el grado de confianza que debe asignársele cuando la predicción es determinística. La incertidumbre de una predicción meteorológica puede variar ampliamente de un día a otro en función de la situación sinóptica, y el método del sistema de predicción por conjuntos permite obtener una estimación de esa incertidumbre diaria. El sistema de predicción por conjuntos ha sido concebido para muestrear la función de distribución de probabilidades (fdp) de la predicción, y se utiliza frecuentemente para obtener predicciones probabilísticas, que permitan evaluar la probabilidad de determinados fenómenos.

Las presentes directrices tienen por objeto asesorar a los predictores y a los proveedores de predicciones acerca de cómo hacer un uso efectivo de los sistemas de predicción por conjuntos y de lo que cabe o no esperar de esos sistemas. Se presupone un conocimiento práctico general de los principios y usos de la PNT. Para una más amplia información, puede consultarse la publicación *User Guide to ECMWF Forecast Products* (Guía de usuario de los productos de predicción del CEPMMP) (http://www.ecmwf.int/products/forecasts/guide/) del Centro europeo de predicción meteorológica a medio plazo (CEPMMP), que contiene directrices detalladas sobre la utilización de los sistemas del CEPMMP, y en particular de los sistemas de predicción por conjuntos. El material de formación del Programa de cooperación para la enseñanza y la formación en meteorología operativa (COMET) (https://www.meted.ucar.edu/training_detail.php?orderBy=&topic=15) contiene también instrucciones prácticas sobre la utilización de los sistemas de predicción por conjuntos.

Por lo general, se recomienda enérgicamente comunicar el valor de la incertidumbre junto con cada predicción. Se ofrece orientación al respecto en la publicación *Guidelines on Communicating Forecast Uncertainty* (PWS-18, WMO/TD-No. 1422) (Directrices sobre la comunicación de la incertidumbre de las predicciones).

Los ejemplos que figuran en las presentes directrices están tomados, en su mayoría, del Sistema mundial y regional de predicción por conjuntos (MOGREPS) de la Oficina Meteorológica de Reino Unido o del sistema de predicción por conjuntos del CEPMMP, aunque los principios aquí expuestos son aplicables a cualquier sistema de predicción por conjuntos.

2. **¿POR QUÉ UTILIZAR UN SISTEMA DE PREDICCIÓN POR CONJUNTOS?**

Los sistemas de predicción numérica del tiempo basados en los modelos numéricos más recientes de la atmósfera son sistemas muy potentes que ayudan al predictor a elaborar predicciones meteorológicas. Numerosos modelos permiten hoy representar el estado del tiempo con un grado de fidelidad suficiente para obtener predicciones meteorológicas automatizadas básicas a partir de los resultados directos de los modelos, aunque en general se recomienda realizar un postprocesamiento para calibrar...
las predicciones automatizadas. Los resultados directos de los modelos permiten representar ciertos elementos meteorológicos con mayor exactitud que otros; por ejemplo, la temperatura superficial suele obtenerse con una resolución bastante satisfactoria (a menudo en superficies orográficas no muy inclinadas), mientras que la precipitación suele obtenerse con una resolución mucho menor.

Sin embargo, pese a esos avances, nadie ignora que incluso los mejores modelos pueden arrojar a veces predicciones muy desacertadas. Tales resultados son más evidentes en predicciones con varios días de antelación, y tienen su origen en la naturaleza caótica de la atmósfera. Para predecir el tiempo inicializamos el modelo sobre la base de un análisis del estado de la atmósfera, basado a su vez en las observaciones más recientes realizadas en todo el mundo. A partir de esos datos, el modelo calcula la evolución de la atmósfera desde el estado del análisis inicial y durante los días siguientes. La teoría del caos lleva aparejada una extrema sensibilidad de los procesos evolutivos de la atmósfera a errores de pequeña magnitud en el análisis inicial, de tal modo que errores minúsculos (frecuentemente demasiado pequeños para que el predictor se aperciba de ellos) pueden traducirse en grandes errores en la predicción. Incluso disponiendo de las mejores observaciones, no siempre podemos hacer un análisis perfecto y, por consiguiente, tampoco predicciones perfectas. Esa es la razón por la que utilizamos sistemas de predicción por conjuntos.

Para obtener una predicción por conjuntos introducimos alteraciones muy pequeñas (perturbaciones) en el análisis para, a continuación, ejecutar de nuevo el modelo a partir de esas nuevas condiciones iniciales ligeramente perturbadas. Si todas las predicciones del conjunto son muy similares entre sí podremos fiarnos de nuestra predicción, pero si todas ellas evolucionan de manera dispar (por ejemplo, si algunas predicen una gran temporal mientras que otras predicen una depresión mucho más débil), nuestra confianza será mucho menor. Sin embargo, si consideramos la proporción de miembros del conjunto que predicen un temporal, podremos obtener una estimación de la probabilidad de ese fenómeno.

Si consideramos las predicciones a más corto plazo, con entre 1 y 2 días de antelación, las pautas atmosféricas generales suelen ser mucho más predecibles, aunque también podremos encontrarnos con diferencias importantes entre miembros del conjunto si nos fijamos en los detalles a nivel local del tiempo, que pueden tener importancia para gran número de usuarios de las predicciones. Asimismo, la evolución a mayor escala puede ser ocasionalmente incierta incluso a corto plazo —es lo más probable cuando estudiamos la evolución de grandes tempestades—, por lo que será importante utilizar un sistema de predicción por conjuntos incluso para las predicciones a corto plazo.

3. **TIPOS DE SISTEMAS DE PREDICCIÓN POR CONJUNTOS**

En la predicción meteorológica se utilizan tres grandes tipos de sistemas de predicción por conjuntos (mundial, regional y a escala convectiva) que, al igual que los modelos de PNT determinísticos, incorporan en la predicción diferentes escalas de tiempo. Estos tres tipos de sistemas están sucintamente descritos más adelante. En cada una de esas categorías hay numerosas variantes, por ejemplo las distintas maneras de crear perturbaciones y las variaciones de los modelos utilizados dentro de otros modelos; sin embargo, los principios de utilización de los conjuntos son siempre los mismos, aunque no entraremos en detalles al respecto. (Cabe señalar que los conjuntos se utilizan también para las predicciones a largo plazo y para las predicciones climáticas. Los principios son muy similares, pero estas últimas no tienen cabida en las presentes directrices, circunscritas a predicciones de hasta 15 días, que es el periodo respecto del que habitualmente es posible predecir el estado del tiempo diario).

3.1 **Sistemas de predicción por conjuntos mundiales**

Los sistemas de predicción por conjuntos mundiales suelen diseñarse y utilizarse para predicciones a medio plazo que abarquen de 3 a 15 días. Hacen uso de modelos de PNT mundiales, y operan a resoluciones relativamente bajas con tamaños de retícula típicos comprendidos entre 30 y 70 km. Aunque han sido principalmente concebidos para predicciones a medio plazo, su cobertura mundial hace que puedan utilizarse también para predicciones a corto plazo en regiones del mundo en que no
se dispone de otros sistemas de predicción por conjuntos, y pueden ser la única opción disponible para muchos Miembros de la Organización Meteorológica Mundial (OMM). En ese contexto, se utilizan extensamente para obtener productos que apoyen las iniciativas del Proyecto de demostración de predicciones de fenómenos meteorológicos extremos de la OMM.

Los predictores que utilizan sistemas de predicción por conjuntos mundiales deben recordar en todo momento que la utilización de resoluciones de retícula relativamente bajas limitará el grado de detalle que cabrá esperar de las predicciones. Los sistemas de predicción por conjuntos mundiales no siempre permitirán resolver enteramente detalles tales como la intensidad de la velocidad del viento durante una tempestad.

3.2 **Sistemas de predicción por conjuntos regionales**

Los sistemas de predicción por conjuntos regionales o modelos de área limitada utilizan modelos regionales en áreas de menor tamaño y se centran en las predicciones a corto plazo de entre 1 y 3 días. Usan un tamaño de retícula mayor que los sistemas de predicción por conjuntos mundiales, normalmente de entre 7 y 30 km, que les permite predecir con mayor detalle el estado del tiempo a nivel local y resolver mejor los sistemas atmosféricos intensos. No obstante, el predictor debe recordar las limitaciones de la resolución; no cabe esperar, por ejemplo, que un sistema de predicción por conjuntos regional prediga detalles de ciertos sistemas de pequeña escala, como las tormentas.

Un sistema de predicción por conjuntos regional debe obtener sus condiciones de contorno laterales (los sistemas atmosféricos que penetran en el área desde el exterior del dominio) de un sistema de predicción por conjuntos mundial. Algunos sistemas de predicción por conjuntos regionales adoptan un análisis regional de alta resolución y calculan las correspondientes perturbaciones de alta resolución, aunque otros simplemente obtienen las condiciones iniciales y las perturbaciones del mismo sistema de predicción por conjuntos mundial que proporciona las condiciones de contorno; esta operación suele denominarse “reducción de escala”. En un sistema de predicción por conjuntos obtenido por reducción de escala, el modelo debe ejecutarse durante varias horas antes de que consiga aumentar su resolución.

3.3 **Sistemas de predicción por conjuntos a escala convectiva**

La PNT de escala convectiva, con tamaños de retícula de 1 a 4 km y aplicada sobre dominios relativamente pequeños, está ya disponible en varios de los centros de PNT más avanzados. Esos modelos, denominados en ocasiones “de capacidad convectiva”, permiten resolver parte del detalle de los sistemas convectivos de gran tamaño y, por consiguiente, pueden tratar de predecir detalles tales como la ubicación e intensidad de las tormentas. Aunque esa posibilidad podría mejorar considerablemente la resolución, los sistemas convectivos evolucionan con gran rapidez y son predecibles a escalas de tiempo pequeñas, por lo que las predicciones pueden resultar rápidamente contaminadas por procesos caóticos. Por ello, los sistemas de predicción por conjuntos presentan un gran interés para la PNT de escala convectiva, ya que la inestabilidad convectiva añade una nueva escala de incertidumbre de la predicción no resuelta por los modelos de menor resolución, y con escalas de tiempo mucho menores.

Además de la convección propiamente dicha, los modelos con ese grado de resolución han mejorado considerablemente la capacidad de predecir otros elementos atmosféricos locales, como las nubes bajas o la visibilidad, de utilidad para el ámbito aeronáutico. Muchos de esos fenómenos resultan considerablemente afectados por el forzamiento topográfico, que puede mejorar la predecibilidad (por ejemplo, en presencia de laderas, líneas costeras, vegetación o albedo) cuando puede resolverse mediante modelos (por ejemplo, en los casos de iniciación convectiva o de niebla en vaguada). Los sistemas de predicción por conjuntos a escala convectiva podrían proporcionar información sobre la predecibilidad de todos esos elementos meteorológicos.

En el momento de redactarse las presentes directrices (2011) se estaban desarrollando sistemas de predicción por conjuntos a escala convectiva en diversos centros. En Alemania, el Servicio Meteorológico Nacional viene utilizando, desde diciembre de 2010, el sistema COSMO-DE-EPS con una resolución de 2,8 km en modo preoperacional. Por su parte, la Oficina Meteorológica de Reino
Unido y Météo-France tienen previsto introducir ese tipo de sistemas en un futuro próximo, y se está investigando al respecto en otros países.

Debido al elevado costo de operación de los sistemas de predicción por conjuntos a escala convectiva, es poco probable que, antes de muchos años, pueda disponerse de ellos fuera de los países que los producen, y la experiencia en esa materia es todavía muy limitada. En las presentes directrices se describen solo sucintamente.

Se prevé que la resolución mucho mayor de los sistemas de predicción por conjuntos a escala convectiva permita una mejor resolución de numerosos fenómenos meteorológicos en comparación con los sistemas de predicción por conjuntos mundiales y regionales, por ejemplo, en el caso de los vientos locales forzados por la topografía y, posiblemente, de elementos tales como las nubes bajas o la visibilidad, especialmente cuando tales fenómenos están forzados por rasgos locales de la topografía o de la superficie terrestre.

En el caso de la precipitación, es probable que los modelos resuelvan mejor las escalas espacial y de intensidad de la precipitación local, especialmente en el caso de la precipitación convectiva. Sin embargo, un muestreo del intervalo completo de valores de incertidumbre en situaciones de precipitación convectiva haría necesarios conjuntos de gran tamaño, con centenares o millares de miembros, que no serán asequibles en un futuro próximo. Por ello, se recomienda firmemente someter a postprocesamiento los sistemas de predicción por conjuntos a escala convectiva mediante técnicas tales como el procesamiento de entorno (consistente en suponer que ciertos elementos, como los aguaceros convectivos, pueden ser reales pero estar incorrectamente ubicados, y estar localizados en un radio de, por ejemplo, 10 retículas respecto de la posición que indica el modelo), con el fin de obtener una distribución espacial de probabilidades más realista. Cabría utilizar también técnicas similares respecto de otras variables, con objeto de acomodarse al pequeño tamaño de los conjuntos.

4. **Productos habituales de los sistemas de predicción por conjuntos**

En esta sección se describen algunos de los productos habituales generados por la mayoría de los sistemas de predicción por conjuntos, y se exponen brevemente sus posibles aplicaciones.

4.1 **Generación de productos básicos de los resultados directos de los modelos**

Es posible obtener una gama de productos básicos de los sistemas de predicción por conjuntos, y en la mayoría de los casos directamente de los campos de resultados de los modelos. Algunos de ellos son los siguientes.

4.1.1 **Media de conjunto**

Este valor es una media simple del valor paramétrico respecto de la totalidad de los miembros del conjunto. Normalmente, la mayoría de los índices de verificación habituales (error cuadrático medio, error absoluto medio, coeficiente de correlación de anomalía temporal, etc.) verifican la media de conjunto mejor que la predicción de control, ya que suaviza los detalles impredecibles y presenta en términos simples los elementos más predecibles de la predicción. Puede proporcionar una indicación satisfactoria del elemento de la predicción que pueda predecirse con confianza, pero no es fiable por sí sola, ya que rara vez predecirá el riesgo de fenómenos extremos.

4.1.2 **Dispersión de conjunto**

Este valor se calcula en términos de la desviación típica (sin error sistemático) de una variable de los resultados de un modelo, y proporciona una indicación del grado de incertidumbre de un parámetro de la predicción. Suele representarse gráficamente superpuesto a la media del conjunto. En la figura 1 pueden verse tanto la presión media del conjunto al nivel medio del mar, bajo la forma de contornos
4.1.3 **Probabilidad básica**

Las estimaciones de probabilidad se obtienen frecuentemente en forma de proporción simple de los miembros del conjunto que predicen un fenómeno en una ubicación o punto de retícula determinado, por ejemplo, temperaturas a 2 m inferiores a 0° Celsius o más de una desviación típica por debajo del valor normal. En la figura 2 se representa el contorno de probabilidad de las ráfagas de viento superiores a 40 nudos. La presión media del conjunto al nivel medio del mar aparece también representada en los contornos de color gris.

Conviene señalar que esta definición de probabilidad no describe una probabilidad bayesiana verdadera tal como la definiría un estadístico, sino que proporciona una estimación útil a efectos prácticos. Presupone que el modelo refleja con exactitud la distribución climática de los fenómenos. Las predicciones de probabilidad obtenidas por ese medio deben verificarse siempre en muestras de gran tamaño para determinar en qué medida las probabilidades de predicción están relacionadas con las frecuencias observadas.

El ejemplo representado en la figura 3 a continuación es uno de los resultados obtenidos para el proyecto del Pacífico Sur, que forma parte de una iniciativa más amplia: el Proyecto de demostración de las predicciones de fenómenos meteorológicos extremos.

4.1.4 **Cuantíllos**

Un cierto número de cuantíllos de la distribución de conjunto puede proporcionar un resumen de la incertidumbre. Los cuantíllos habitualmente utilizados son el valor máximo y mínimo de la distribución del conjunto, y los percentiles 25, 50 (mediana) y 75. Se utilizan también con frecuencia los percentiles 5, 10, 90 y 95.
4.1.5 Mapas de tipo “spaghetti”

Los mapas con un número determinado de contornos de variables (por ejemplo, contornos de 528, 546 y 564 Dm con una altura geopotencial de 500 hPa) de todos los miembros de un conjunto permiten hacerse una buena idea de la predecibilidad del campo. Cuando los contornos de todos los miembros del conjunto se hallan muy próximos la predecibilidad es mayor, mientras que cuando se asemejan a una ración de spaghetti la predecibilidad es menor (véase la figura 4).
4.1.6 **Mapas de tipo “sello de correos”**

Un conjunto de pequeños mapas en los que aparecen los contornos de cada miembro de un conjunto (véase la figura 5) permite al predictor visualizar los escenarios respecto de cada predicción y evaluar los posibles riesgos de fenómenos extremos. Este método, sin embargo, ofrece una gran cantidad de información que puede ser difícil de asimilar.

![Mapa de tipo “sello de correos”](image)

Fuente: Datos del Centro europeo de predicción meteorológica a medio plazo utilizados por el Servicio Meteorológico de Reino Unido, © British Crown Copyright

Figura 5. Mapa de tipo “sello de correos” correspondiente al 7 de febrero de 2009 a las 12.00 UTC (temperatura potencial de bulbo húmedo a 850 hPa, en grados Celsius; T + 300 desde el 26 de enero a las 00.00 UTC)
4.1.7 **Meteogramas de emplazamientos específicos**

Para determinados emplazamientos, es posible extraer variables de los resultados de los modelos. Hay gran número de formatos que pueden utilizarse para representar la predicción en las distintas ubicaciones, por ejemplo mediante gráficos de tipo penacho o mediante probabilidades de precipitación. Uno de los que se utilizan más comúnmente es el meteograma de conjuntos, en el que se representan mediante un rectángulo y un filamento los puntos de percentilo principales de la distribución de la predicción respecto de una o más variables (véase la figura 6).

5. **OBSERVACIONES GENERALES SOBRE LAS APLICACIONES DE LOS SISTEMAS DE PREDICCIÓN POR CONJUNTOS**

En esta sección se exponen varios principios generales que son válidos para todas las aplicaciones de los sistemas de predicción por conjuntos. En las secciones siguientes se detalla cada una de las aplicaciones de los sistemas de predicción por conjuntos para distintos tipos de predicción.

a) Un sistema de predicción por conjuntos representa óptimamente la incertidumbre de las variables resueltas.

i) Las representaciones en altitud suelen tener mayor grado de acierto que en superficie.

- Los parámetros superficiales se ven afectados por la incertidumbre a escala de subretícula no resuelta por el modelo.

ii) A medida que aumentan la resolución y la eficacia del modelo, la capacidad de predecir los parámetros meteorológicos superficiales aumenta de manera continua.

Fuente: Servicio Meteorológico de Reino Unido, © British Crown Copyright

Figura 6. Meteograma del sistema europeo de predicción por conjuntos MOGREPS correspondiente a Brize Norton (51.8° N 1.6° W) desde el 19 de julio de 2007 a las 09.00 UTC hasta el 21 de julio de 2007 a las 12.00 UTC
b) Un sistema de predicción por conjuntos es tan eficaz como el modelo o los modelos en que se basa.

i) Si un modelo no es capaz de representar ciertos fenómenos, el sistema de predicción por conjuntos tampoco podrá hacerlo.
 – Un buen ejemplo son las tempestades convectivas, que la mayoría de los conjuntos no puede resolver, por lo cual algunos centros están desarrollando conjuntos a escala convectiva.

ii) Un sistema de predicción por conjuntos reflejará todos los errores sistemáticos del modelo que utilice.

c) ¿Cómo combinar una predicción determinística con una predicción por conjuntos o probabilística?

i) Capacidad relativa de los miembros del conjunto en comparación con niveles altos de resolución/control

ii) Véase la publicación *Guidelines on using information from EPS in combination with single higher resolution NWP forecasts* (Directrices sobre la utilización de información obtenida de sistemas de predicción por conjuntos en combinación con predicciones numéricas del tiempo de mayor resolución) (febrero de 2006).

d) Muchos se preguntan si un predictor puede mejorar la distribución ponderando repetidamente los miembros (por ejemplo, la predicción de control de alta resolución, si está incluida) o descartando algunos de ellos.

i) Los predictores pueden considerar que algunos miembros no reflejan la realidad.

ii) ¿Se pueden eliminar algunos miembros sobre la base de observaciones recientes o seleccionar un “miembro óptimo”?
 – TAL VEZ SÍ, respecto de ciertos aspectos de la predicción si esta es a muy corto plazo, y respecto de una predicción local que afecte una superficie pequeña.
 – En áreas extensas o en el dominio completo del modelo, la predicción de control será siempre la de mayor grado de acierto.
 – NO, si la predicción es a más largo plazo.

iii) Este método es subjetivo y difícil.

iv) Se recomienda firmemente que los predictores utilicen la distribución del sistema de predicción por conjuntos completa y utilicen un método probabilístico.

e) Es necesario conocer los puntos fuertes y débiles de los modelos/conjuntos de que disponga el predictor, quien deberá poder acceder fácilmente a la documentación.

i) Las verificaciones de múltiples umbrales deberán ponerse a disposición de los usuarios.

ii) Documentación resumida de los puntos fuertes y débiles, por estaciones del año.

f) Debe tenerse precaución con los parámetros de diagnóstico de los “extremos de cadena”, tales como la precipitación y la nubosidad. Considérense, por ejemplo, las distribuciones de los índices en situaciones convectivas.

g) Los predictores no deberán basarse siempre en los resultados directos de los modelos respecto de las variables meteorológicas, sino que deberán considerar también la posibilidad de analizar
diagnósticos de mayor resolución, que podrían ayudar a interpretar la predicción del sistema de predicción por conjuntos (por ejemplo, características sinópticas, medio circundante/precursors/potencial de fenómenos meteorológicos de fuerte impacto, como la convergencia de humedad, las corrientes en chorro a baja altura, las regiones donde se desarrollan fenómenos o los diagnósticos convectivos).

La utilización de sistemas de predicción por conjuntos (y de otras herramientas probabilísticas) abre la posibilidad de emitir dos tipos diferentes de predicciones: íntegramente probabilísticas o determinísticas con información suplementaria sobre la incertidumbre (por ejemplo, valores de confianza). El tipo de predicción que se utilice influirá en las decisiones que se adopten sobre la base de la predicción. Por lo general, la utilización de predicciones íntegramente probabilísticas permite a todos los usuarios adaptar sus decisiones a sus necesidades específicas (por ejemplo, mediante estimaciones de costo-pérdida), por lo que se recomienda particularmente su uso.

6. **UTILIZACIÓN DE SISTEMAS DE PREDICCIÓN POR CONJUNTOS EN PREDICCIONES DETERMINÍSTICAS**

Por lo general, se afirma que las predicciones probabilísticas suministran las predicciones meteorológicas más acertadas y completas para los clientes y, por ello, debería alentarse su uso, especialmente respecto de periodos de anticipación prolongados. Sin embargo, se sabe que numerosos clientes piden predicciones determinísticas simples, por lo que, cuando deba elaborarse una predicción determinística, la utilización de un sistema de predicción por conjuntos podrá proporcionar con frecuencia una predicción más fiable que una sola PNT determinística. Esta afirmación es particularmente cierta en el caso de las predicciones a más de 1 a 3 días, y puede ayudar a reducir los saltos entre sesiones sucesivas del sistema predictivo, en todos los intervalos temporales.

Para optimizar una predicción determinística pueden utilizarse varios indicadores del sistema de predicción por conjuntos. La media de conjunto arrojará, en promedio, la puntuación máxima para gran número de índices de verificación habituales, pero hay que recordar que tenderá a suavizar los detalles impredecibles a menor escala, y rara vez reflejará la intensidad de los sistemas atmosféricos importantes y de fuerte impacto. Así, la media del conjunto no deberá utilizarse por sí sola cuando se procure predecir las posibles repercusiones de fenómenos meteorológicos severos. Otros indicadores útiles para conseguir la predicción más verosímil pueden ser la mediana (el punto central de la fdp) o el modo (el valor más probable de la fdp), que son más fáciles de identificar para parámetros atmosféricos únicos que para la predicción en su conjunto.

Si se ha de emitir una predicción determinística, en ocasiones es posible reforzarla declarando el valor de confianza de la predicción para aprovechar en alguna medida la información disponible acerca de la incertidumbre. El valor de confianza no será siempre el mismo respecto de todos los elementos de una misma predicción. Si se utilizan índices de confianza, lo ideal es proporcionarlos por separado respecto de cada variable. El nivel de confianza deberá basarse en la dispersión del conjunto, aunque con consideración también de las limitaciones conocidas del grado de acierto predictivo.

La metodología óptima para emitir una predicción determinística dependerá de la predecibilidad indicada por la dispersión del conjunto. La dispersión puede analizarse mediante diversos productos, como las gráficas de tipo “spaghetti” o un mapa que describa la varianza a escala sinóptica y, seguidamente, a escalas menores utilizando meteogramas, cuantíllov y análisis de aglomerados, entre otros.

a) **Dispersión pequeña del conjunto (buena predecibilidad)**

i) En este caso puede ser razonable ofrecer mayores detalles en la predicción.

ii) Utilícese, como dato indicativo, el control, el control de alta resolución, la media de conjunto o la mediana (considerando debidamente la necesidad de calibración o de corrección de errores sistemáticos).
iii) La dispersión podría diferir según la variable del modelo, de modo que una dispersión pequeña respecto de un parámetro no garantizaría la confianza respecto de todos los aspectos de la predicción.

– Una predecibilidad satisfactoria a escala sinóptica no siempre es sinónimo de predecibilidad de las variables atmosféricas superficiales, como la temperatura o la precipitación convectiva.

– El predictor deberá seguir teniendo en cuenta la incertidumbre de los parámetros no resueltos por el modelo.

b) Dispersión grande del conjunto (predecibilidad baja)

i) Evítese incluir demasiados detalles en la predicción.

ii) Considérese la media de conjunto pero, si el conjunto abarca una serie de escenarios, la media de conjunto no ofrecerá un escenario realista.

iii) En esa situación, utilícese el miembro más representativo del conjunto (por ejemplo, el aglomerado más poblado o el modo de la fdp) como indicación del resultado más probable.

– Obsérvese que el miembro más representativo del conjunto podría no arrojar el valor más probable respecto de cada elemento atmosférico (por ejemplo, la temperatura más probable en una ubicación dada podría no estar correlacionada con la cantidad de precipitación más probable).

iv) Evaluación de la incertidumbre

– Aliéntese a los usuarios a seguir de cerca las actualizaciones de las predicciones.

v) Tómense en cuenta los valores extremos del sistema de predicción por conjuntos y del control de alta resolución.

– Evalúense detenidamente las posibles evoluciones de la situación sinóptica y sus impactos potenciales.

– Tómese en cuenta el comportamiento de los modelos.

– El control de alta resolución podría ser más útil para representar ciertos fenómenos de fuerte impacto.

c) En predicciones de corto plazo (12 a 18 horas) podrían tomarse en cuenta las observaciones más recientes (entre 3 y 6 horas del período de predicción) con el fin de seleccionar un escenario o un miembro del conjunto.

i) Por ejemplo, la mejor predicción de un ciclón en rápida evolución podría corresponder al miembro con la mejor situación al término de unas horas, pero SOLO a muy corto plazo.

ii) Téngase presente que la evolución futura está influída por elementos provenientes de niveles superiores. Por ello, es imposible seleccionar miembros para predicciones superiores a aproximadamente 24 horas.

iii) Téngase en cuenta también la coherencia entre las sesiones más recientes y las anteriores.

d) A más largo plazo, y aunque las predicciones probabilísticas son las más idóneas, si se ha de producir una predicción determinística, podría obtenerse una predicción más fiable utilizando la media de conjunto o la mediana, que conferirían mayor uniformidad entre sesiones sucesivas de la predicción.
6.1 **Adopción de decisiones a partir de predicciones determinísticas**

Las predicciones del tiempo solo son útiles cuando se las utiliza para tomar decisiones. Se suele decir que es más fácil tomar una decisión a partir de una predicción determinística que de una probabilística. Sin embargo, cuando el predictor emite una predicción determinística la incertidumbre subyacente subsiste, y el predictor debe conjeturar el resultado probable. A menos que el predictor comprenda claramente la decisión que el usuario ha de adoptar sobre la base de la predicción, así como el impacto de los diferentes resultados, la conjetura del predictor podría no adaptarse adecuadamente a las necesidades reales del usuario.

a) Cuando se opta por una predicción determinística de un fenómeno específico, es necesario conocer en cierta medida las necesidades del usuario final. No es posible adoptar una decisión óptima sin conocer la relación costo/pérdida del usuario. Esa relación puede evaluarse mediante una encuesta o una conversación directa con el usuario final.

b) Cuando proceda, el predictor deberá indicar los riesgos e impactos asociados a los escenarios más pesimistas, juntamente con el resultado más probable.

7. **ESCENARIOS**

Para resumir la incertidumbre de una predicción meteorológica puede ser útil describir un número reducido de resultados o escenarios posibles, en lugar de indicar en todo detalle la predicción probabilística. Para ciertos clientes acostumbrados a recibir predicciones determinísticas, esta modalidad puede ser más aceptable. Lo ideal sería que el sistema de predicción por conjuntos se utilizara para estimar la probabilidad relativa de los diferentes escenarios presentados. En la mayoría de los casos, para evitar confusiones, lo más adecuado podría consistir en dar a conocer un escenario de máxima probabilidad, basado en las indicaciones precedentes sobre la emisión de predicciones determinísticas, además de un único escenario alternativo. Este podría ser un escenario pesimista, que refleje posiblemente una baj probabilidad pero una posibilidad de fuerte impacto, que sugerirían los miembros más extremos del conjunto. Sin embargo, deberá procurarse no dar la impresión de que cualquiera de los dos escenarios sería correcto, ya que la verdad podría muy bien situarse en un punto intermedio (o incluso ser diferente).

Para obtener escenarios alternativos son útiles los mapas de tipo “sello de correos” (véase la sección 4.1.6), que presentan al predictor todas las predicciones del conjunto, o los aglomerados (véase la sección 9.3), que agrupan automáticamente los miembros del conjunto y ofrecen al predictor una evaluación objetiva de los escenarios posibles.

8. **PREDICCIONES ÍNTEGRAMENTE PROBABILÍSTICAS**

Siempre que sea posible, se recomienda adoptar un planteamiento íntegramente probabilístico para la generación de predicciones. Se obtiene con ello una representación completa de la información sobre incertidumbre proporcionada por el sistema de predicción por conjuntos, y los usuarios pueden también afinar sus decisiones para adaptarlas a sus propias aplicaciones.

Hay varias formas de expresar las predicciones probabilísticas sin necesidad de utilizar en todos los casos la palabra “probabilidad”, por ejemplo:

a) la predicción de una variable atmosférica representada mediante barras de error que varían en función de la dispersión del conjunto;

b) una representación más completa de la distribución del conjunto, que indique cierto número de valores de percentíl, como en los productos de meteograma habituales;
c) las probabilidades de determinados fenómenos (claramente definidos), expresadas numéricamente o mediante contornos sombreados en un mapa.

Cuando se presenta una predicción en términos probabilísticos, es muy importante expresar con toda claridad a qué corresponde tal probabilidad, de modo que quede claro y sea comprensible tanto para el predictor como para el usuario. Nos referimos con frecuencia a la probabilidad de que se produzca cierto fenómeno, por lo que es necesario definirlo. A menudo, el fenómeno será el rebase de un valor de umbral (por ejemplo, más de 50 mm de lluvia o temperaturas inferiores a 0° Celsius). Idealmente, se trataría de un fenómeno con un impacto considerable respecto del que tendría que tomarse una decisión (por ejemplo, la probabilidad de que se forme hielo en las carreteras, que haría necesario su tratamiento). Es también importante definir la fecha y el lugar del fenómeno que se predice:

a) fecha exacta o período de tiempo a que hace referencia la predicción;

b) ubicación exacta o área a que hace referencia la predicción.

Si se trata de una superficie, ¿la predicción se refiere al rebase de un umbral en algún punto de esa área, o en toda ella?

Para asegurarse de que un fenómeno está claramente definido, es útil preguntarse si sería fácil determinar cuantitativamente si el fenómeno ha tenido lugar o no (en otras palabras, si es posible verificar la predicción). Si la respuesta no es claramente afirmativa, podría ser necesario definir mejor el fenómeno.

Se exponen a continuación varias cuestiones que deberían tenerse en cuenta antes de adoptar predicciones probabilísticas basadas en los resultados de un sistema de predicción por conjuntos:

a) Puede enviarse directamente al usuario final una corrección calibrada y corregida de los errores sistemáticos (bajo costo).

 Esta modalidad permite emitir predicciones automatizadas para numerosos lugares y usuarios.

 Los métodos de corrección de errores sistemáticos y de calibración están descritos en la sección 9.

b) Los resultados directos de los modelos de un conjunto deberían utilizarse con precaución, ya que podrían no proporcionar predicciones probabilísticas fiables si bien aportarán con frecuencia información útil. En algunos casos, por ejemplo, cuando no se dispone de sistema de calibración, podría resultar esencial utilizar los resultados directos de los modelos; la calibración es difícil respecto de ciertas variables, como la precipitación, o en los casos en que no se dispone de observaciones adecuadas.

c) Para generar predicciones probabilísticas de resultados que dependen de más de un elemento atmosférico, es importante calcular el resultado respecto de cada miembro del conjunto para, a continuación, combinar miembros y construir las probabilidades. Se conservan así correlaciones coherentes entre diferentes variables atmosféricas y entre diferentes ubicaciones (por ejemplo, la correlación de temperatura entre dos ubicaciones). La calibración o el postprocesamiento podrían menoscabar esa coherencia.

 Este principio es también válido cuando se utiliza el conjunto como base para construir modelos de impacto corriente abajo (por ejemplo, modelos hidrológicos) en los que el modelo corriente abajo debe ejecutarse respecto de cada miembro del conjunto para, seguidamente, calcularse la probabilidad del impacto corriente abajo.

d) En situaciones “habituales”, los predictores no deberían intentar modificar las predicciones probabilísticas producidas por el sistema de predicción por conjuntos (en términos de resultados directos del modelo o postprocesados). Las predicciones pueden emitirse directamente para el público. Los predictores deberían centrar su atención en las situaciones “inhabituales”.
e) En situaciones “inhabituales”, los predictores pueden adaptar las predicciones probabilísticas basándose, por ejemplo, en su experiencia, en procesos analógicos o en modelos conceptuales. El predictor podría ser capaz de corregir ciertos errores sistemáticos conocidos o de subsanar deficiencias de los modelos. Para introducir las correcciones se consultarán las directrices que figuran en la sección 9.

f) Ciertos estudios indican que, cuando se ofrece información sobre la incertidumbre junto con las predicciones, los destinatarios son capaces de adoptar mejores decisiones que cuando las predicciones son determinísticas. Cuando no se ofrece información sobre la incertidumbre, los destinatarios recurren a sus propias conjeturas.

g) Las probabilidades deben presentarse de manera gráfica y completa. Se encontrarán ejemplos y directrices al respecto en la publicación *Guidelines on Communicating Forecast Uncertainty* (PWS-18, WMO/TD-No. 1422) (Directrices sobre la comunicación de la incertidumbre de las predicciones).

h) Es necesario definir las probabilidades de los fenómenos que son pertinentes a determinadas aplicaciones. Puede citarse, a modo de ejemplo, la aplicación en la esfera agrícola, en la que los períodos secos o lluviosos influyen en el riego, la siembra y la cosecha.

i) El riesgo es una combinación de la probabilidad de un fenómeno y de sus posibles repercusiones, variable que el sistema de predicción por conjuntos es capaz de estimar. Proporciona a los predictores una base objetiva y valiosa para adoptar decisiones, con el fin de evaluar los diferentes niveles de aviso. Los impactos deben acordarse con las autoridades correspondientes (los clientes de los servicios meteorológicos para el público). La climatología suele ser una buena referencia para establecer los umbrales de los fenómenos que acarrean impactos. Los umbrales pueden adaptarse en función de la evolución reciente de los distintos parámetros medioambientales (las acumulaciones recientes de precipitación de lluvia afectan a la saturación del suelo, a la cubierta foliar de vegetación, a la cubierta de nieve, etc.).

j) Se recomienda que, cuando se indiquen las probabilidades de un fenómeno meteorológico de fuerte impacto, el predictor agregue un comentario o aviso por escrito.

9. **POSTPROCESAMIENTO**

Las presentes directrices tienen por objeto ofrecer explicaciones y orientaciones sobre el postprocesamiento mediante métodos dinámicos estadísticos o de otro tipo, con el fin de mejorar los resultados de un sistema de predicción por conjuntos. Existen numerosos métodos, y algunos de los más habituales se describen en esta sección. Algunos métodos son bastante genéricos, y podrían ser idóneos para que los productores de sistemas de predicción por conjuntos los apliquen en la propia fuente, mientras que otros son bastante específicos de ciertas aplicaciones y pueden ser más aptos para que los apliquen determinados usuarios.

9.1 **Postprocesamiento estadístico**

Por lo general, se recurre a un postprocesamiento estadístico para subsanar los errores sistemáticos de los modelos y, por consiguiente, añadir valor a los resultados directos de un modelo de PNT. Tales errores son particularmente importantes en los parámetros superficiales (por ejemplo, temperatura a 2 m o humedad a 2 m, velocidad del viento a 10 m, precipitación o nubosidad total), y están vinculados a las condiciones locales.

Más concretamente, el postprocesamiento estadístico puede utilizarse para:

a) eliminar errores sistemáticos;

b) ajustar la dispersión del conjunto;
c) cuantificar la incertidumbre no representada directamente por el sistema de predicción por conjuntos;

d) predecir elementos que el modelo no represente explícitamente (por ejemplo, baja visibilidad).

Por lo general, los métodos estadísticos son más fáciles de aplicar a ciertos tipos de variables de los resultados de los modelos. La temperatura, por ejemplo, es una variable generalmente bastante fácil, ya que es continua y varía de manera relativamente uniforme en los campos de los modelos y, más importante aún, los errores de temperatura suelen reflejar una distribución aproximadamente normal. La precipitación, en cambio, es particularmente difícil, ya que los campos de precipitación tienen con frecuencia una estructura en múltiples escalas, difícil de representar por los modelos, especialmente a pequeñas escalas. Su distribución climatológica y, por consiguiente, la distribución de los errores predictivos, está acotada por el valor cero en uno de los extremos y suele ser bastante asimétrica, por lo que su representación estadística es mucho más difícil. En ocasiones, el problema puede reducirse transformando la distribución de modo que adopte una configuración cuasinormal, pero en general los métodos de postprocesamiento de la precipitación son mucho menos eficaces que los aplicables a otras variables.

9.1.1 **Corrección de errores sistemáticos del primer momento de la función de distribución de probabilidad**

Este tipo de postprocesamiento es similar a los métodos de estadística de los resultados de los modelos aplicados a modelos individuales, aunque con algunas diferencias importantes. En el caso de los conjuntos, es ya sabido que un método de estadística de los resultados de los modelos tradicional, entrenado específicamente para cada período de anticipación de la predicción, dará lugar a una disminución importante de la dispersión del conjunto para valores más prolongados del período de anticipación. En su lugar, se recomienda utilizar un método de prognosis pseudoperfecta. Ese método está basado en la utilización de modelos estadísticos de los resultados de los modelos computados a lo largo de las primeras 24 horas de la predicción y, seguidamente, aplicados a las etapas correspondientes para todos los valores del período de anticipación de la predicción.

Se recomienda utilizar métodos adaptativos, como el filtro de Kalman, para que las correcciones se actualicen automáticamente y reflejen así las modificaciones de los modelos (mejoras) y los cambios de estación del año.

En el caso de los conjuntos de modelo único (en que se utiliza un mismo modelo para todos los miembros, incluso aunque se introduzcan perturbaciones), deberá entrenarse el mismo modelo estadístico utilizando la predicción de control y deberá aplicarse a todos los miembros del conjunto.

En el caso de los conjuntos multimodelo o multiproceso físico (es decir, cuando se utilicen modelos diferentes para construir la fdp, o cuando se apliquen sistemáticamente diferentes versiones de un modelo, por ejemplo, diferentes sistemas de parametrización), será necesario efectuar un entrenamiento y aplicar determinados modelos estadísticos para cada versión del modelo.

En cualquier caso, para desarrollar esos modelos estadísticos se necesita un conjunto de resultados del modelo (predictores) y observaciones (predicandos) con fines de entrenamiento. En el caso de los métodos adaptativos, como el filtro de Kalman, el conjunto de entrenamiento se actualiza continuamente a partir de las predicciones diarias.

Las “observaciones” pueden consistir en observaciones específicas del emplazamiento o pueden ser el conjunto de análisis más idóneo disponible. En el caso de las observaciones vinculadas a emplazamientos, el postprocesamiento estadístico dará lugar a predicciones locales (es decir, en cada punto específico en que se disponga de observaciones). Cuando se utilicen análisis, el producto final será una predicción sin errores sistemáticos, reticulada y a escala reducida.

Conviene señalar que, cuando la corrección de error sistemático se introduce de manera independiente en distintas variables meteorológicas, la correlación entre las variables representadas por los diferentes
miembros del conjunto podría desaparecer parcialmente. Por esa razón, los predictores prefieren a veces visualizar los resultados directos de los modelos.

9.1.2 Calibración de momentos superiores de la función de distribución de probabilidad

La eliminación de errores sistemáticos respecto del segundo momento de la fdp suele conocerse como “calibración”. Tiene por objeto mejorar la fiabilidad de la predicción probabilística. Por ello, ese tipo de postprocesamiento es específico de los sistemas de predicción por conjuntos, y es particularmente importante para optimizar las predicciones de probabilidad. Al igual que sucede con las correcciones de error sistemático del primer momento, la calibración está basada en las condiciones locales y necesita de observaciones o análisis de alta calidad como referencia.

Se están desarrollando varios métodos para calibrar tanto el primero como el segundo momento de la fdp con el fin de optimizar la distribución completa, en particular:

a) un método desarrollado en la Universidad de Washington (Estados Unidos de América), que está actualmente considerado como uno de los mejores para ese fin. El método, denominado “promediación de modelo bayesiano”, está basado en determinados supuestos estadísticos como, por ejemplo, una distribución normal de la temperatura;

b) la técnica de las estadísticas de resultados de modelo con distribución de núcleo por conjuntos (EKDMOS).

Los métodos anteriormente indicados se aplican generalmente a variables tales como la temperatura o la velocidad del viento. Otras variables, como la precipitación, son más difíciles de corregir, debido a la naturaleza de la fdp y a la variabilidad local de las observaciones. Se están desarrollando algunos métodos específicos, pero los métodos de postprocesamiento son actualmente menos satisfactorios y podrían no mejorar considerablemente los resultados en bruto de los modelos.

Debe señalarse que el potencial de postprocesamiento estadístico tiene limitaciones, especialmente en caso de fenómenos severos. Por lo general, la calibración mejorará la fiabilidad estadística de las predicciones probabilísticas (la concordancia entre las probabilidades de la predicción y la frecuencia de las observaciones del fenómeno), aunque reducirá la resolución de las predicciones (la capacidad de evaluar si un fenómeno acaecerá o no). En ocasiones, la calibración mejorará las predicciones de fenómenos habituales, pero degradará las probabilidades de otros más extremos. Ello se debe a que las observaciones de esos tipos de fenómenos son raras, y las distribuciones estadísticas han sido entrenadas para los fenómenos más habituales. Por ello, no cabe esperar que, en este caso, la calibración mejore considerablemente las predicciones en bruto.

Se han hecho algunos intentos por desarrollar un postprocesamiento específico para las predicciones de fenómenos más extremos como, por ejemplo, los sistemas de aviso de fenómenos meteorológicos severos de primera aproximación. En tales casos, es posible calibrar específicamente los sistemas de modo que se optimice la fiabilidad para umbrales extremos. No obstante, la interpretación que puedan hacer los expertos sigue siendo particularmente importante a la hora de evaluar el riesgo de fenómenos extremos.

9.2 Reducción de escala

Es posible utilizar varios métodos para incorporar detalles locales en las predicciones generadas con modelos de menor resolución, y esas técnicas pueden aplicarse a las predicciones resultantes de sistemas de predicción por conjuntos, del mismo modo que en el caso de la PNT determinística.

9.2.1 Reducción de escala dinámica

La reducción de escala dinámica puede definirse como la utilización de un modelo de PNT de área limitada y resolución superior con objeto de añadir detalles forzados por rasgos topográficos y de
resolver procesos de escala fina, como la convección. Idealmente, la reducción de escala afectaría a todos los miembros del conjunto pero, cuando hay limitaciones de costo, existe la posibilidad de reducir en escala un conjunto seleccionado de miembros. En la técnica de reducción de escala dinámica, las condiciones iniciales, las condiciones de contorno y las perturbaciones se obtienen directamente de los miembros del sistema de predicción por conjuntos de menor resolución. Habrá que procurar que la reducción de escala se traduzca en un buen comportamiento del modelo de alta resolución; por ejemplo, en unos cocientes de tamaño de retícula apropiados y en una frecuencia adecuada de actualización de las condiciones de contorno. El comportamiento del modelo deberá someterse a prueba respecto de todo el dominio. Numerosos sistemas de predicción por conjuntos de modelos de área local y a escala convectiva son sistemas dinámicos de reducción de escala basados en conjuntos mundiales.

9.2.2 Reducción de escala topográfica mediante modelos físicos simples

Para ciertos parámetros, como la temperatura a 2 m o la velocidad del viento a 10 m, es posible aplicar una reducción de escala simple basándose en una relación con la topografía de la superficie. Así, por ejemplo, en las predicciones de temperatura superficial la tasa de disminución podría servir para reducir la escala del campo del sistema de predicción por conjuntos de baja resolución y obtener una retícula de resolución superior mediante una topografía reticulada. En la figura 7 se representan las probabilidades de viento fuerte a escala reducida a partir de un sistema de predicción por conjuntos regional mediante un campo de orografía de alta resolución, y puede apreciarse que es posible detectar probabilidades de viento en las montañas de Escocia que estaban ausentes en la versión del gráfico con los resultados directos del modelo.

Fuente: Servicio Meteorológico de Reino Unido, © British Crown Copyright

Figura 7. Probabilidades de vientos fuertes correspondientes al 5 de agosto de 2011 a las 09.00 UTC (T + 15), calculadas a partir del MOGREPS (componente regional) tras reducir a escala los campos de los resultados de los modelos a una retícula de 2 km usando un campo orográfico de alta resolución. Obsérvense las probabilidades de alta resolución de fuertes vientos en las montañas del noreste de Escocia reveladas por la reducción a escala.
9.2.3 Extracciones de emplazamientos específicos

Es posible generar predicciones para ubicaciones específicas extrayendo datos de las retículas de los modelos. En las implementaciones más simples, los datos se obtienen sin más del punto de retícula más cercano del modelo, o son interpolados linealmente entre los puntos de retícula más cercanos. Para mejorar esas técnicas se utilizan distintos métodos, basados en técnicas similares a los métodos de reducción de escala. En particular, deberán realizarse correcciones de la temperatura superficial y de la velocidad del viento que reflejen la diferencia entre la orografía del modelo y la altitud verdadera del emplazamiento. Un sistema inteligente que seleccione el punto de retícula más representativo puede ser también mejor que una simple interpolación, especialmente en las proximidades de líneas costeras en que podría ser preferible escoger el punto terrestre más cercano para representar una ubicación en tierra, en lugar de, por ejemplo, el punto de retícula más cercano, que podría estar situado sobre el mar. Ese método podría ser también conveniente en las proximidades de formaciones orográficas de fuerte pendiente.

También puede utilizarse un modelo unidimensional para determinadas aplicaciones predictivas; por ejemplo, modelos de niebla unidimensionales para aeropuertos.

9.2.4 Reducción de escala estadística

Otros métodos de reducción de escala de los campos de superficie consisten en establecer una relación estadística entre los campos del modelo de baja resolución y los análisis de alta resolución. Se indican a continuación dos métodos posibles.

9.2.4.1 Utilización de diferencias entre análisis

Es posible desarrollar la relación estadística comparando análisis reticulados de alta resolución con sus correspondientes campos de análisis de la retícula del modelo del sistema de predicción por conjuntos. Se obtiene así un vector de reducción de escala, que puede aplicarse seguidamente a los campos predictivos del sistema de predicción por conjuntos para obtener campos de predicción exentos de error sistemático y a escala reducida sobre la retícula de alta resolución.

9.2.4.2 Filtro de Kalman

Es posible aplicar la técnica del filtro de Kalman en cada punto de la retícula de alta resolución con el fin de establecer una relación estadística con los campos de análisis del sistema de predicción por conjuntos de baja resolución. Así, puede aplicarse después el filtro de Kalman a los campos predictivos del sistema de predicción por conjuntos con el fin de obtener campos predictivos desprovistos de error sistemático y a escala reducida sobre la retícula de alta resolución.

9.2.5 Diagnóstico de fenómenos meteorológicos de fuerte impacto

Es posible utilizar varios métodos para diagnosticar fenómenos meteorológicos específicos de fuerte impacto a partir de modelos de PNT, y es también posible aplicarlos a los sistemas de predicción por conjuntos. Un buen ejemplo de ello son los diagnósticos de convección severa. Esta técnica se basa en los resultados multinivel de varios modelos para diagnosticar la inestabilidad y el potencial de convección severa, además de indicar probabilidades de fenómenos tales como granizos fuertes, tornados o ráfagas de viento convectivas.

9.2.6 Reducción de escala mediante una combinación de sistemas de predicción por conjuntos de baja resolución y predicciones de control de alta resolución

Para obtener una predicción probabilística de alta resolución pueden añadirse campos de perturbación de conjuntos de baja resolución (diferencia entre la predicción del miembro perturbado y la predicción de control) a los campos predictivos de control de alta resolución.
9.3 Técnicas de aglomerado

Los procesos de clasificación pueden utilizarse para sintetizar la enorme cantidad de información contenida en los conjuntos. Hay varios tipos de clasificaciones posibles:

a) aglomerados que agrupen los miembros más similares entre sí desde el punto de vista de su evolución en una región geográfica definida. Pueden utilizarse varios algoritmos de aglomeración habituales, con los que pueden obtenerse resultados diferentes. El aglomerado obtenido dependerá también de las variables seleccionadas;

b) la clasificación “en tubo”, que consiste en identificar una aglomeración central de los miembros más cercanos a la media del conjunto, así como los miembros que más marcadamente difieren de la media del conjunto (extremos del tubo). La clasificación “en tubo” es útil para identificar el resultado más probable, así como los escenarios posibles que más diferirán de esa solución;

c) la clasificación de las predicciones estableciendo una concordancia entre los miembros de un conjunto y un conjunto definido de regímenes de flujo; por ejemplo, los tipos de Grosswetterlagen definidos para Europa central. Este método podría proporcionar el aglomerado que más se ajuste a las expectativas de un predictor sinóptico.

9.4 Utilización de repredicciones

Las investigaciones han evidenciado que la calibración de predicciones por conjuntos mediante conjuntos históricos de repredicciones –predicciones obtenidas con un mismo modelo o sistema de predicción por conjuntos a partir de conjuntos de casos históricos, realizadas sobre la base de reanálisis– pueden ser muy efectivas para mejorar la calidad y fiabilidad de las predicciones probabilísticas. Tales predicciones proporcionan un conjunto de datos más satisfactorio para el entrenamiento de métodos de postprocesamiento estadístico que la utilización de predicciones recientes, ya que conllevan un mejor muestreo de diferentes regímenes y tipos de estados atmosféricos. Esa característica puede ser particularmente útil si se desea optimizar la calibración de predicciones de fenómenos raros o extremos. Sin embargo, la utilización de repredicciones incrementa considerablemente el costo de computación de un sistema de predicción por conjuntos, y depende también de la disponibilidad de un conjunto de datos de reanálisis adecuado para establecer las condiciones iniciales. En consecuencia, son muy pocos los sistemas de predicción por conjuntos que disponen actualmente de conjuntos de datos de repredicción si bien se recomienda utilizarlos siempre que sea posible. Cuando no se disponga de un conjunto de datos completo con fines de repredicción, podría utilizarse un archivo reciente de predicciones del sistema de predicción por conjuntos obtenidas del mismo sistema, aunque probablemente se conseguirá un muestreo menos fiable del modelo climático completo.

9.4.1 Índice de predicción de fenómenos extremos

Una de las aplicaciones de las repredicciones es el cálculo de un índice de predicción de fenómenos extremos.

Los modelos de PNT y los sistemas de predicción por conjuntos no representan con exactitud el clima de la atmósfera real, y la mejor manera de identificar los fenómenos extremos podría basarse en la climatología modelizada. El índice de predicción de fenómenos extremos desarrollado por el Centro europeo de predicción meteorológica a medio plazo (véase la figura 8) permite identificar predicciones que son extremas respecto del clima modelizado, alertando así del riesgo de que se produzcan fenómenos meteorológicos severos, aunque no ofrece probabilidades explícitas de dichos fenómenos.

Asimismo, es posible utilizar las repredicciones para evaluar la severidad de una predicción en relación con los periodos de retorno climatológicos, que podría ser útil también para dar a conocer la severidad de un fenómeno.
Concordancia entre cuantíl

Otro método para calibrar la predicción, que puede utilizarse cuando se dispone de una estimación del clima modelizado, es la concordancia entre cuantíl. Por ejemplo, el valor correspondiente al percentil 90 del clima modelizado puede interpretarse de tal modo que represente el percentil 90 de la distribución climática observada real en un lugar determinado. Por lo general, este método hace necesario utilizar un conjunto de datos de repredicción para obtener el clima modelizado.

Determinación de trayectorias de elementos atmosféricos

Una técnica eficaz para los sistemas de predicción por conjuntos de resolución inferior, como los sistemas de predicción por conjuntos mundiales, consiste en determinar la trayectoria de ciertos elementos meteorológicos para cada miembro del conjunto. Si bien los ciclones tropicales no están bien resueltos en el modelo, son un buen ejemplo de elemento meteorológico cuyo movimiento, sin embargo, pueden predecir satisfactoriamente los modelos mundiales. No cabe esperar que un sistema de predicción por conjuntos mundial prediga la intensidad de los fuertes vientos o de las intensas lluvias que pueda provocar un ciclón tropical, pero sí que siga la evolución de su posición. El predictor puede interpretar las probabilidades de que se produzcan fenómenos meteorológicos severos si conoce las características de los ciclones tropicales, además de la información obtenida por conjuntos con respecto al rumbo que probablemente seguirá. En la figura 9 se presentan la trayectoria del huracán Tomás respecto de los miembros del conjunto (izquierda), las probabilidades de que el temporal pase cerca de los lugares representados en el mapa (centro), y varias trayectorias resumidas, como la trayectoria media del conjunto (derecha). Los Centros Meteorológicos Regionales Especializados sobre ciclones tropicales tienen frecuentemente acceso a estos tipos de mapas.

UTILIZACIÓN DE SISTEMAS DE PREDICCIÓN POR CONJUNTOS PARA LA PREDICCIÓN DE FENÓMENOS METEOROLÓGICOS SEVEROS Y PARA LA EMISIÓN DE AVISOS

Los fenómenos meteorológicos severos o de fuerte impacto suceden en muy distintas escalas espaciales y temporales, desde los ciclones tropicales, los ciclones extratropicales, los monzones,
Las tempestades de invierno y otros sistemas de gran escala hasta los sistemas de menor escala, como las tempestades violentas de alcance local, la precipitación orográfica, las tormentas o los tornados. Los predictores deberán tener en cuenta los diferentes niveles de predecibilidad de los distintos tipos de fenómenos (por ejemplo, no deben intentar predecir una tormenta con tres días de antelación).

Un sistema de aviso de fenómenos meteorológicos severos debidamente estructurado de un Servicio Meteorológico e Hidrológico Nacional (SMHN) deberá acordar con los usuarios los valores de umbral, los períodos de anticipación y el nivel de servicio apropiados. Por lo general, los umbrales reflejarán la intensidad del impacto que el fenómeno tendrá previsiblemente en la sociedad, y en particular el peligro para la vida y los bienes, y los trastornos de la vida cotidiana. A continuación se exponen algunos de los aspectos de un sistema de aviso que convendría considerar:

a) Tipos de aviso; regiones; umbrales (severidad/impacto y probabilidad)
 i) \(\text{riesgo} = \text{probabilidad} \times \text{impacto} \)

b) Un buen sistema de aviso es aquel que los usuarios entienden fácilmente y que incorpora umbrales estándar convenidos con los predictores.
 i) En muchos países se utiliza actualmente un sistema de semáforos en cuatro colores (verde, amarillo, ámbar y rojo) para indicar diferentes niveles de riesgo y los correspondientes niveles de actuación que los usuarios deberían adoptar.

c) Un buen sistema de aviso contará con que los usuarios hagan llegar sus comentarios a los SMHN. A su vez, los SMHN deberán transmitir sus comentarios a los productores, con el fin de que estos puedan diseñar productos apropiados.

Los sistemas de predicción por conjuntos son una herramienta potente para la predicción de fenómenos meteorológicos severos. En los sistemas de aviso de impacto, los sistemas de predicción por conjuntos pueden ser útiles para estimar la probabilidad de fenómenos meteorológicos peligrosos, que es uno de los factores presentes en la ecuación de riesgo estimado = probabilidad \(\times \) impacto. No obstante, los sistemas de predicción por conjuntos pueden predecir específicamente fenómenos meteorológicos severos que el modelo o los modelos han conseguido resolver. De no ser ese el caso, lo siguiente es de aplicación:

Fuente: Servicio Meteorológico de Reino Unido, © British Crown Copyright

Figura 9. Productos de ciclón tropical obtenidos del conjunto MOGREPS a 15 días, con indicación de las trayectorias del huracán Tomás a partir de la predicción emitida el 1 de noviembre de 2010
La predicción numérica del tiempo adolece de limitaciones a la hora de resolver explícitamente fenómenos de menor escala, lo cual se traduce en una subestimación de la probabilidad de fenómenos extremos en el sistema de predicción por conjuntos.

Los sistemas de predicción por conjuntos pueden, en ocasiones, identificar las condiciones precursoras de procesos severos o las condiciones circundantes favorables en gran escala, como los índices convectivos.

Es menos probable que los sistemas de predicción por conjuntos de menor resolución (mundiales) resuelvan detalles de un fenómeno extremo.

Los sistemas de predicción por conjuntos regionales, que suelen tener una resolución superior, deberían proporcionar unas estimaciones de incertidumbre más detalladas a menor escala.

Puede resultar necesario calibrar los umbrales de riesgo de los sistemas de predicción por conjuntos para reflejar las limitaciones antes indicadas.

Las indicaciones tempranas de ciertos fenómenos extremos serán perceptibles en la cola de la distribución del conjunto.

Por consiguiente, los predictores y los usuarios no deberían ignorar los fenómenos de baja probabilidad, especialmente cuando son extremadamente raros.

Si, por ejemplo, se ignoran las probabilidades por debajo del 20 por ciento o incluso del 10 por ciento, podría omitirse la identificación de los fenómenos más importantes que señale el sistema de predicción por conjuntos.

Para poder utilizar bajas probabilidades, los predictores necesitan información de verificación.

Las “falsas alarmas” son en realidad características acertadas de la baja probabilidad. Sin embargo, los valores de probabilidad bajos podrían ser necesarios en situaciones que puedan conllevar consecuencias graves.

Es de esperar que poco tiempo antes de que se produzca el fenómeno la probabilidad aumente (habitualmente, pero no siempre).

Es posible también predecir correctamente un fenómeno extremo, aunque con errores o incertidumbres en cuanto la ubicación o la fecha/hora.

La interpretación sinóptica (por ejemplo, la determinación de trayectorias de elementos atmosféricos o la utilización de procesos análogos) o las herramientas de reducción de escala estadísticas pueden mejorar el grado de acierto de un sistema de predicción por conjuntos básico.

Obsérvese que algunos métodos estadísticos necesitan de muestras de datos muy numerosas para el entrenamiento, y podrían no ser suficientemente adecuados para los fenómenos raros o extremos.

Los productos de trazado de trayectorias de ciclones (tanto para los ciclones tropicales como para los extratropicales) pueden resumir convenientemente la evolución de los temporales de fuerte impacto.

Hay posibilidades de desarrollar más diagnósticos por configuración en los sistemas de fenómenos meteorológicos severos de baja resolución.

El índice de predicción de fenómenos extremos puede ser una herramienta útil para alertar a los predictores de un posible fenómeno severo.
a) Ese índice no denota probabilidades explícitas de fenómenos específicos, y debería interpretarse conjuntamente con otras herramientas.

b) Actualmente solo un pequeño número de sistemas pueden generar un índice de predicción de fenómenos extremos, ya que se necesita una climatología modelizada.

Un examen de los resultados obtenidos de múltiples sistemas de predicción (tanto sistemas de predicción por conjuntos como determinísticos) puede proporcionar información adicional sobre la probabilidad de fenómenos extremos.

a) Es importante producir resultados de verificación que evidencien el grado de acierto y las limitaciones de los sistemas de predicción por conjuntos.

i) Los usuarios de los sistemas de predicción por conjuntos deberían ser conscientes de talesventajas y limitaciones.

ii) Sin embargo, debido a la rara frecuencia de la mayoría de los fenómenos extremos, suele ser imposible verificar de manera fiable (o estadísticamente válida) el comportamiento probabilístico. Podría obtenerse una estimación aproximada del grado de acierto en relación con los fenómenos extremos extrapolando a partir de la verificación de otros fenómenos menos severos.

b) Dado que el grado de acierto de los sistemas de predicción por conjuntos disminuye a medida que aumenta el período de anticipación, los productos más recientes suelen gozar de una mayor credibilidad. Sin embargo, las sesiones precedentes del sistema de predicción por conjuntos pueden aportar información útil sobre algún fenómeno raro debido a la falta de dispersión (limitación del tamaño de la muestra).

11. **MODELIZACIÓN DE LOS IMPACTOS DE LOS FENÓMENOS METEOROLÓGICOS SEVEROS**

Es posible propagar la incertidumbre de una predicción meteorológica a los impactos acoplando miembros del conjunto con modelos de impacto y generando una distribución de predicciones de impacto. Tal es el caso de los modelos hidrológicos de predicción probabilística de crecidas, los modelos de mareas de tempestad costera y los modelos de efectos termobiológicos. Es esta una aplicación avanzada, crecientemente utilizada en los centros más avanzados. En la figura 10 puede verse una predicción por conjuntos de mareas de tempestad en un puerto costero, en la que se ha utilizado un sistema de predicción meteorológica por conjuntos para forzar un conjunto con un modelo de mareas de tempestad. Las líneas rojas en la parte superior del gráfico indican el nivel de peligro de crecida, que oscila vertical y horizontalmente con la marea, y puede apreciarse también un riesgo de crecida en el punto en que las líneas de la marea de tempestad de la predicción por conjuntos cruzan por encima de las líneas rojas. Se trata de un ejemplo interesante, ya que un miembro del conjunto produce una marea de tempestad extrema el día 7, indicativa de una baja probabilidad de inundación severa en la costa. En tales situaciones, el usuario necesita tener capacidad para adoptar medidas de preparación temprana, aunque con prudencia, ya que la probabilidad de inundación es baja.

12. **VERIFICACIÓN**

La verificación es una parte muy importante de todas las actividades de predicción. Si no verificamos las predicciones, es decir, si no medimos la eficacia predictiva comparando la predicción con la evolución real del tiempo, no tenemos manera de aprender ni de mejorar nuestras predicciones en el futuro. Lo mismo cabe decir de las predicciones probabilísticas. A menudo se oye decir que las predicciones probabilísticas nunca pueden fallar (a menos que asignemos una probabilidad igual a cero o al 100 por ciento). Habrá también quien afirme que son un subterfugio para que el predictor
evite tomar una decisión. Para refutar esas opiniones tenemos que demostrar que sí verificamos las predicciones, y que estas tienen un grado de acierto satisfactorio.

No se incluye aquí orientación detallada sobre la verificación de las predicciones, pero se señalan algunos puntos importantes:

a) Una sola predicción probabilística no puede ni acertar ni errar.
 i) Si predecimos un fenómeno con alto nivel de probabilidad y finalmente sucede, suele ser tentador afirmar que hemos acertado. Hay que evitar ese tipo de reacciones, ya que cuando predecimos algún fenómeno de baja probabilidad y finalmente este sucede, lo que deberíamos decir al usuario es que “informamos que era una posibilidad, aunque de baja probabilidad”.

b) Si afirmamos que hay una probabilidad del 30 por ciento de que se acumulen más de 10 mm de lluvia y las observaciones indican que se ha recogido solo 1 mm, la predicción no es ni acertada ni fallida. Tenemos que medir la cantidad efectivamente observada en un gran número de ocasiones en que hayamos hecho esa misma predicción, de modo que por cada 100 veces que lo hayamos predicho obtemamos más de 10 mm en 30 ocasiones. Ese es el significado de una predicción. De cada 100 ocasiones en que predigamos una probabilidad del 80 por ciento, deberíamos acertar 80 veces en la predicción.

c) La manera más simple de presentar las verificaciones consiste en utilizar un diagrama de fiabilidad que represente gráficamente la frecuencia observada en función de las frecuencias de predicción; es decir, que represente fielmente la prueba anteriormente descrita. En la figura 11 se ofrecen tres ejemplos de diagrama de fiabilidad para probabilidades de velocidad del viento con valores de fuerza Beaufort superiores a 8, 9 y 10. Lo ideal sería que la línea discurriera por encima de la diagonal principal, desde (0,0) hasta (1,1). El diagrama de la izquierda (fuerza 8) es un ejemplo muy apropiado, que indica que una alta probabilidad predictiva significa efectivamente que es más probable que el fenómeno se produzca (la pendiente del gráfico es ligeramente inferior al valor ideal, aunque satisfactoria). El diagrama central (fuerza 9) es similar, aunque no tan buen ejemplo por lo que se refiere a las probabilidades más altas de la parte superior del gráfico. El diagrama de la derecha (fuerza 10) tiene un grado de acierto satisfactorio para probabilidades de hasta el 30 por ciento, pero por encima de ese valor no contiene información útil. De hecho, se trata de un fenómeno raro, y el conjunto de datos no contiene muestras
suficientes para determinar si el grado de acierto es satisfactorio. Este problema es habitual en la verificación de los fenómenos extremos; no se dispone de datos suficientes para medir el grado de acierto probabilístico.

d) Existen muchos otros indicadores del grado de acierto de una predicción probabilística. Se indican aquí algunos otros que son bastante habituales. Puede obtenerse mucha más información al respecto buscando en Internet los términos correspondientes o consultando las guías habituales de verificación de predicciones.

i) Índice de Brier: error cuadrático medio de las predicciones probabilísticas de un fenómeno dado.

ii) Índice de acierto de Brier: compara el índice de Brier de las predicciones con ese mismo índice de un sistema de predicción de referencia.

iii) Fiabilidad: mide la concordancia entre las probabilidades pronosticadas y las frecuencias observadas.

iv) Resolución: mide el grado de acierto del sistema en la predicción de probabilidades diferentes de la “normal”.

v) Característica de funcionamiento relativa: mide el grado de acierto de las predicciones para la toma de decisiones, y es similar a la resolución.

vi) Índice continuo de probabilidad clasificado e índice de probabilidad clasificado: semejantes al índice de Brier para múltiples umbrales de la variable atmosférica.

La Comisión de Sistemas Básicos de la OMM ha definido un conjunto normalizado de índices de verificación para la comparación de sistemas de predicción por conjuntos respecto de varios de esos sistemas mundiales en el sitio web del Centro principal de verificación de sistemas de predicción por conjuntos (http://epsv.kishou.go.jp/EPsv/).

13. FORMACIÓN DE PREDICTORES

Por lo general, la formación de un predictor debería abarcar componentes de predecibilidad y de predicción por conjuntos:

a) motivación para realizar predicciones probabilísticas: teoría del caos y su impacto;
b) teoría y métodos estadísticos generales;

c) finalidades de las condiciones iniciales y de las perturbaciones del modelo;

d) herramientas normalizadas de verificación de conjuntos, y su significado;

e) explicación del significado básico de los productos (por ejemplo, las líneas de un gráfico);

f) métodos de postprocesamiento y su impacto.

Formación práctica

La formación de los predictores en la utilización de los sistemas de predicción por conjuntos debería ser una experiencia práctica, basada en la utilización de herramientas lo más parecidas posible a las utilizadas en las operaciones reales. La formación práctica en el uso de sistemas de predicción por conjuntos solo será realmente eficaz cuando un SMHN tenga acceso a los datos operacionales del sistema, disponga de tiempo para utilizarlos, y pueda acceder a los productos y herramientas necesarios para hacer un uso directo de ellos.

Si la formación no va acompañada de ejercicios prácticos, sus beneficios se desvanecerán rápidamente.

a) La formación impartida conjuntamente con un proyecto de demostración, como el Proyecto de demostración de las predicciones de fenómenos meteorológicos extremos, puede ayudar a mejorar y consolidar las actividades de formación gracias a la aportación de datos operacionales del sistema de predicción por conjuntos.

b) Durante la formación, convendrá estudiar casos particulares que demuestren el uso apropiado de la orientación relativa a los sistemas de predicción por conjuntos, tanto en escenarios ordinarios como de fenómenos meteorológicos severos.

c) Las herramientas web pueden ser útiles para la formación, ya que pueden utilizarse en cualquier estación de trabajo a través de cualquier navegador, lo que permite seguir accediendo a ella posteriormente.

d) En el campo relativamente nuevo de los sistemas de predicción por conjuntos, puede esperarse que la formación periódica reporte máximos beneficios. Los predictores necesitan tiempo para adquirir experiencia en la utilización de las presentes directrices, que deberá completarse con actividades de formación que refuercen los conceptos más importantes. Sería también útil que varios SMHN compartieran sus experiencias en la utilización de sistemas de predicción por conjuntos.

e) Recursos de formación:

 – User Guide to ECMWF Forecast Products (Guía de usuario de los productos de predicción del CEPMMP)
 http://www.ecmwf.int/products/forecasts/guide/

 – módulos sobre predicción por conjuntos del COMET:
 https://www.meted.ucar.edu/training_detail.php?orderBy=&topic=15
Para más información, diríjase a:

Organización Meteorológica Mundial
7 bis, avenue de la Paix – Case postale 2300 – CH 1211 Ginebra 2 – Suiza

Oficina de comunicación y de relaciones públicas
Tel.: +41 (0) 22 730 83 14 – Fax: +41 (0) 22 730 80 27
Correo electrónico: cpa@wmo.int

www.wmo.int