Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
ASMET 7: Convective Weather and Aviation in West and Central Africa
The hazards associated with convective systems present some of the most dangerous conditions encountered by aircraft and pose many challenges to aviation operations. When convection is forecast to develop, aviation forecasters are required to issue a series of warning messages and other meteorological aeronautical products to various members of the aviation community. This lesson teaches these forecasters how to produce the products, doing so in the context of a case study in which learners assume the role of aeronautical forecaster on duty at the airport in Niamey, Niger on a night when conve ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1079
Published by: The University Corporation for Atmospheric Research ; 2013
The hazards associated with convective systems present some of the most dangerous conditions encountered by aircraft and pose many challenges to aviation operations. When convection is forecast to develop, aviation forecasters are required to issue a series of warning messages and other meteorological aeronautical products to various members of the aviation community. This lesson teaches these forecasters how to produce the products, doing so in the context of a case study in which learners assume the role of aeronautical forecaster on duty at the airport in Niamey, Niger on a night when convection develops. The lesson is one of three aviation weather case studies developed by the ASMET team to improve aviation forecasting in Africa.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Convection ; Lesson/ Tutorial ; West Africa ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Applying Diagnostic and Forecast Tools: Forecasting Fog and Low Stratus
This module discusses how to apply various observational data and remote sensing tools such as satellite, METARS, soundings, profilers, radar, and model analyses to diagnose the potential for fog and/or low stratus. Various forecast tools (such as model forecast fields, forecast soundings, and BUFKIT) used to assess fog and/or low stratus potential onset, intensity, and duration are also examined. This module is part of the Distance Learning Course 1: Forecasting Fog and Low Stratus.
Available online: https://www.meted.ucar.edu/training_module.php?id=117
Published by: The University Corporation for Atmospheric Research ; 2003
This module discusses how to apply various observational data and remote sensing tools such as satellite, METARS, soundings, profilers, radar, and model analyses to diagnose the potential for fog and/or low stratus. Various forecast tools (such as model forecast fields, forecast soundings, and BUFKIT) used to assess fog and/or low stratus potential onset, intensity, and duration are also examined. This module is part of the Distance Learning Course 1: Forecasting Fog and Low Stratus.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Observations ; Fog ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Adding Value to NWP Guidance
The purpose of this module is to train operational meteorologists at NWS WFOs and elsewhere how to maximize opportunities to add value to NWP forecasts. The training includes use of the methods and tools from earlier modules in Course 2 of Effective Use of NWP in the Forecast Process. Included in the module are two case examples for the short- and medium-range. Additionally, a WES "caselet" is available from the NWS Warning Decision Training Branch that further illustrates how to add value to NWP guidance.
Available online: https://www.meted.ucar.edu/training_module.php?id=779
Published by: The University Corporation for Atmospheric Research ; 2010
The purpose of this module is to train operational meteorologists at NWS WFOs and elsewhere how to maximize opportunities to add value to NWP forecasts. The training includes use of the methods and tools from earlier modules in Course 2 of Effective Use of NWP in the Forecast Process. Included in the module are two case examples for the short- and medium-range. Additionally, a WES "caselet" is available from the NWS Warning Decision Training Branch that further illustrates how to add value to NWP guidance.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Microwave Remote Sensing: Clouds, Precipitation, and Water Vapor
This module provides an introduction to polar-orbiting-satellite-based microwave remote sensing products that depict moisture and precipitation in the atmosphere. The module begins with definitions and descriptions of total precipitable water and cloud liquid water products, contrasting each with more familiar infrared water vapor and window channel products. This is followed by an overview of microwave precipitation estimation and a discussion of how polar-satellite products compare with those from geostationary satellites and ground-based radar. A series of case examples highlights potential ...
Available online: https://www.meted.ucar.edu/training_module.php?id=226
Published by: The University Corporation for Atmospheric Research ; 2006
This module provides an introduction to polar-orbiting-satellite-based microwave remote sensing products that depict moisture and precipitation in the atmosphere. The module begins with definitions and descriptions of total precipitable water and cloud liquid water products, contrasting each with more familiar infrared water vapor and window channel products. This is followed by an overview of microwave precipitation estimation and a discussion of how polar-satellite products compare with those from geostationary satellites and ground-based radar. A series of case examples highlights potential weather forecasting applications for total precipitable water and precipitation products. The module also includes an introduction to the Global Precipitation Monitoring Mission to which future NPOESS satellites will be an important contributor. This module takes about 75 minutes to complete.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Introduction to the North American Ensemble Forecast System (NAEFS)
This webcast introduces the forecaster to the new multiple-forecast-center North American Ensemble Forecast System (NAEFS). Beginning with a brief review of the theory behind ensemble prediction, this presentation then introduces the elements of the NAEFS. These include the U.S. National Centers for Environmental Prediction’s Global Ensemble Forecast System (GEFS) and the Canadian Meteorological Center’s Ensemble Forecast System (CEFS). A description of each separate ensemble system is followed by a discussion of how the NAEFS improves the ensemble forecast over either the GEFS or CEFS alone. ...
Available online: https://www.meted.ucar.edu/training_module.php?id=548
Published by: The University Corporation for Atmospheric Research ; 2009
This webcast introduces the forecaster to the new multiple-forecast-center North American Ensemble Forecast System (NAEFS). Beginning with a brief review of the theory behind ensemble prediction, this presentation then introduces the elements of the NAEFS. These include the U.S. National Centers for Environmental Prediction’s Global Ensemble Forecast System (GEFS) and the Canadian Meteorological Center’s Ensemble Forecast System (CEFS). A description of each separate ensemble system is followed by a discussion of how the NAEFS improves the ensemble forecast over either the GEFS or CEFS alone. Next, the post-processed statistical products from the NAEFS are described, with examples, and some caveats are provided about their use. Finally, cold and warm season case examples are presented in the final section.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Gridded Forecast Verification and Bias Correction
To become a better forecaster, it is not enough to simply know that a forecast did not verify. One must determine what happened and identify methods for improvement through forecast verification. The forecast verification process helps answer questions like: Is there a particular method that has been more effective in the past in similar circumstances? Is there guidance that is more accurate? Are there persistent biases in our forecasts? Do our forecasts perform better in certain regimes than others? In the era of gridded forecasts, grid-based verification provides more information about the s ...
Permalink![]()
![]()
![]()
Space Weather Impacts on Aviation
Space Weather Impacts on Aviation examines the effects of solar flares, coronal mass ejections, and other solar phenomena on aviation operations. The lesson builds on background science knowledge taught in the course prerequisite, Space Weather Basics, 2nd Edition. The content gives aviation forecasters and others an overview of the information and products available from NOAA's Space Weather Prediction Center and provides practice interpreting and using those products for decision support during space weather events.
Permalink![]()
![]()
![]()
Polar Satellite Products for the Operational Forecaster (POES) Module 2: Microwave Products and Applications
This Web-based module is a component of the Integrated Sensor Training (IST) Professional Development Series (PDS) Professional Competency Unit #6-Satellite Data and Products. This module provides a closer look at the capabilities, products, and applications available to operational weather forecasting with the present suite of microwave instruments onboard both NOAA and DMSP satellites. If you wish, you may launch the module from this page.
Permalink![]()
![]()
![]()
Climate and Water Resources Management, Part 1: Climate Variability and Change
Climate is changing at unprecedented rates in recorded history. A variety of lines of evidence demonstrate that climate change is likely to affect the hydrologic cycle and thus create new challenges in water management. This requires that climate change information be included in water and water-related resources planning, operations, and management. Climate and Water Resources Management, Part 1: Climate Variability and Change describes the terminology, global evidence, regional manifestations, and basic science of global climate variability and anthropogenic change, with a focus on water res ...
Permalink![]()
![]()
![]()
Satellite-Derived Climatology Products for Monitoring Convection Over West and Central Africa
A weather forecaster’s knowledge of climatology is important to the success of a forecast, especially where convection is involved. That’s particularly true over Central and West Africa where convection has a strong diurnal cycle and usually develops over particular geographic regions and during specific time intervals. The lesson describes satellite-derived cloud climatology products and several global instability indices, all of which can be integrated with other products to forecast convection. Although the lesson uses examples of climatology products from specific months, it makes the full ...
Permalink![]()
![]()
![]()
PBL in Complex Terrain - Part 2
This is part 2 of a 2-part Webcast based on a presentation by Dr. David Whiteman on August 11, 2004 in Boulder, CO. Dr. Whiteman presents conceptual and practical information regarding winds in the planetary boundary layer in complex terrain. Part 2 topics include valley wind systems, cross-valley wind systems, diurnal mountain-wind systems, and plateau-basin wind systems.
Permalink![]()
![]()
![]()
River Forecasting Case Study
This module takes the learner through the considerations for the river forecasting decisions associated with the remnants of Hurricane Ivan on 17-19 September, 2004 for the Susquehanna River system in Pennsylvania and New York. The module assists the learner with applying the concepts covered in the foundation topics of the Basic Hydrologic Sciences course. Some of the specific topics pertinent to this case are soil conditions, the impact of QPF on runoff, runoff models, runoff processes, routed flow and stage-discharge relationships. Observations of upstream conditions and comparisons to hist ...
Permalink![]()
![]()
![]()
Challenges of Forecasting in the West
During this presentation, Dr. Brad Colman (NOAA/NWS) covers both the philosophical and methodological approaches to weather forecasting in general, with a special emphasis on challenges introduced in areas of complex terrain. The insightful comments made by the presenter regarding recommended approaches to applying conceptual models, mesoscale model output, and decision trees in the forecast process are useful to anyone who predicts the weather.
Permalink![]()
![]()
![]()
How Models Produce Precipitation and Clouds - version 2
This module, part of the "NWP Training Series: Effective Use of NWP in the Forecast Process", explores how NWP models handle both grid-scale microphysical (precipitation) and convective processes through parameterizations and/or explicit methods, with an emphasis on how model treatment (and errors in the triggering) of these processes affects forecast depiction of precipitation and related forecast variables. Back in 2000, the subject matter expert for this module was Dr. Ralph Petersen of the National Centers for Environmental Prediction, Environmental Modeling Center (NCEP/EMC). Revisions to ...
Permalink![]()
![]()
![]()
Multispectral Satellite Applications: RGB Products Explained
This lesson provides an overview of meteorological and environmental RGB products, namely, how they are constructed and how to use them. The first half provides background information on the RGB development process and the rapid evolution of RGB products as newer geostationary and polar-orbiting satellite imagers incorporate additional spectral channels. The second half of the lesson, the Applications section, focuses on the formulation and uses of RGB products; providing examples, interpretation exercises, satellite specific information, and other background information for many of the common ...
Permalink