Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
Flash Flood Case Studies
This module takes the learner through seven case studies of flash flood events that occurred in the conterminous U.S. between 2003 and 2006. The cases covered include: * 30-31 August 2003: Chase & Lyon Counties, KS * 16-17 September 2004: Macon County, NC * 31 July 2006: Santa Catalina Mountains near Tucson, AZ * 25 December 2003: Fire burn area near San Bernardino, CA * 30 August 2004: Urban flash flood in Richmond, VA * 19-20 August 2003: Urban flash flood in Las Vegas, NV * 9 October 2005: Cheshire County, NH This module assists the learner in applying the concepts covered in the foundation ...
Available online: https://www.meted.ucar.edu/training_module.php?id=267
Published by: The University Corporation for Atmospheric Research ; 2007
This module takes the learner through seven case studies of flash flood events that occurred in the conterminous U.S. between 2003 and 2006. The cases covered include: * 30-31 August 2003: Chase & Lyon Counties, KS * 16-17 September 2004: Macon County, NC * 31 July 2006: Santa Catalina Mountains near Tucson, AZ * 25 December 2003: Fire burn area near San Bernardino, CA * 30 August 2004: Urban flash flood in Richmond, VA * 19-20 August 2003: Urban flash flood in Las Vegas, NV * 9 October 2005: Cheshire County, NH This module assists the learner in applying the concepts covered in the foundation topics of the Basic Hydrologic Sciences course. Some of the specific topics pertinent to these cases are the physical characteristics that make a basin prone to flash floods, basin response to precipitation, flash flood guidance (FFG), the relationship between wildfire and flash floods, and the relationship between urban development and flash floods. Related topics brought out in the cases include radar quantitative precipitation estimation (QPE), the National Weather Service Flash Flood Monitoring and Prediction (NWS FFMP) products, debris flows, impounded water, and interagency communications. The core foundation topics are recommended prerequisite materials since this module assumes some pre-existing knowledge of hydrologic principles. In particular, the Runoff Processes and Flash Flood Processes modules contain material directly related to these cases.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Hydrology ; Satellite ; Flash flood ; Runoff ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Writing TAFs for Winds and LLWS
"Writing TAFs for Winds and Low-level Wind Shear" is the third unit in the Distance Learning Aviation Course 2 (DLAC2) series on producing TAFs that meet the needs of the aviation community. In addition to providing information about tools for diagnosing wind and wind impacts, the module extends the Practically Perfect TAF (PPTAF) process to address airport-specific criteria. By understanding the criteria at airports for which they produce TAFs, forecasters will be better able to produce a Practically Perfect Site-Specific TAF (PPSST). The unit also examines how to effectively communicate logi ...
Available online: https://www.meted.ucar.edu/training_module.php?id=498
Published by: The University Corporation for Atmospheric Research ; 2008
"Writing TAFs for Winds and Low-level Wind Shear" is the third unit in the Distance Learning Aviation Course 2 (DLAC2) series on producing TAFs that meet the needs of the aviation community. In addition to providing information about tools for diagnosing wind and wind impacts, the module extends the Practically Perfect TAF (PPTAF) process to address airport-specific criteria. By understanding the criteria at airports for which they produce TAFs, forecasters will be better able to produce a Practically Perfect Site-Specific TAF (PPSST). The unit also examines how to effectively communicate logic and uncertainty in an aviation forecast discussion (AvnFD) and addresses maintaining an effective TAF weather watch and updating the TAF proactively.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Climate Variability and Change for Water Resources Management - International Edition
Climate is changing at unprecedented rates in recorded history. A variety of lines of evidence demonstrate that climate change is likely to affect the hydrologic cycle and thus create new challenges in water management. This requires that climate change information be included in water and water-related resources planning, operations, and management. Climate Variability and Change for Water Resources Management - International Edition describes the terminology, global evidence, regional manifestations, and basic science of global climate variability and anthropogenic change, with a focus on wa ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1236
Published by: The University Corporation for Atmospheric Research ; 2016
Climate is changing at unprecedented rates in recorded history. A variety of lines of evidence demonstrate that climate change is likely to affect the hydrologic cycle and thus create new challenges in water management. This requires that climate change information be included in water and water-related resources planning, operations, and management. Climate Variability and Change for Water Resources Management - International Edition describes the terminology, global evidence, regional manifestations, and basic science of global climate variability and anthropogenic change, with a focus on water resources management. The lesson presents this information using rich graphics, animations, and interactions. Key messages are highlighted from the 2014 Fifth Assessment Report produced by the Intergovernmental Panel on Climate Change (IPCC). The intended audience for Climate Variability and Change for Water Resources Management - International Edition includes managers and professionals working in water resources planning under variable and changing climates. This includes people who are somewhat removed from the implementation of climate change policy, but still need to be conversant in the topic.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climate ; Climate change ; Drought ; Flood ; Global warming ; Sea ice ; Water cycle ; Runoff ; Climate services ; Energy balance ; Lesson/ Tutorial ; Competencies for Provision of Climate Services
Add tag
No review, please log in to add yours !
![]()
![]()
Basic Hydrologic Sciences Course Orientation
This brief presentation provides an overview of the COMET Basic Hydrologic Sciences course including: goal and target audiences, structure of the course and adapting it to your needs, and a brief description of course components.
Available online: https://www.meted.ucar.edu/training_module.php?id=286
Published by: The University Corporation for Atmospheric Research ; 2007
This brief presentation provides an overview of the COMET Basic Hydrologic Sciences course including: goal and target audiences, structure of the course and adapting it to your needs, and a brief description of course components.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Hydrology ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Principles of Convection I: Buoyancy and CAPE
This module provides a brief overview of Buoyancy and CAPE. Topics covered include the origin of atmospheric buoyancy, estimating buoyancy using the CAPE and Lifted Index, factors that affect buoyancy including entrainment of mid-level air, water loading, convective inhibition, and the origin of convective downdrafts. This module delivers instruction with audio narration, rich graphics, and a companion print version.
Available online: https://www.meted.ucar.edu/training_module.php?id=16
Published by: The University Corporation for Atmospheric Research ; 2002
This module provides a brief overview of Buoyancy and CAPE. Topics covered include the origin of atmospheric buoyancy, estimating buoyancy using the CAPE and Lifted Index, factors that affect buoyancy including entrainment of mid-level air, water loading, convective inhibition, and the origin of convective downdrafts. This module delivers instruction with audio narration, rich graphics, and a companion print version.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Convection ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Jason-2: Using Satellite Altimetry to Monitor the Ocean
Altimeters onboard satellites such as Jason-2 measure sea surface height and other characteristics of the ocean surface. These characteristics are linked to underlying processes and structures, making altimetry data useful for understanding the full depth of the global ocean. This 75-minute module explores major discoveries made possible by altimetry data in oceanography, marine meteorology, the marine geosciences, climate studies, the cryosphere, and hydrology. For example, altimeters have played a vital role in detecting and monitoring sea level rise and its relation to climate change. The m ...
Permalink![]()
![]()
![]()
Runoff Processes
The Runoff Processes module offers a thorough introduction to the runoff processes critical for flood and water supply prediction. Through the use of rich illustrations, animations, and interactions, this module explains key terminology and concepts including paths to runoff, basin and soil properties and runoff modeling. It also provides an introduction to the National Weather Service River Forecast System (NWSRFS). As a foundation topic for the Basic Hydrologic Science course, this module may be taken on its own or used as a supporting topic to provide factual scientific information to stude ...
Permalink![]()
![]()
![]()
Weather Decision Support for the National Airspace System
This three-hour lesson describes the impacts of weather on aviation operations and highlights the role of the National Weather Service (NWS) in supporting the Federal Aviation Administration's air traffic management organization. The lesson contains an Introduction (40 min), several cases (10-20 min each) focused on various weather phenomena, and a detailed case (35 min) allowing forecasters to follow the planning for and evolution of an event. The content emphasizes best practices for aviation forecasters, including identifying and communicating the threat, understanding partners' needs, and ...
Permalink![]()
![]()
![]()
An Introduction to Ensemble Streamflow Prediction
The “Introduction to Ensemble Streamflow Prediction” module provides basic information on probabilistic streamflow forecasting. In this webcast, Dr. Richard Koehler, the National Hydrologic Sciences Training Coordinator for NOAA's NWS, presents information about the types of organizations that might use probabilistic streamflow forecasts as well as foundation concepts and background for ESP methods. The module begins with a brief review of hydrologic models including deterministic, stochastic, and scenario-based approaches. It then provides an overview of time-series approaches including a sum ...
Permalink![]()
![]()
![]()
Coastal Climate Change
As climate changes, dynamic coastal regions are experiencing a wide range of impacts. Sea levels, ocean acidification, sea surface temperatures, ocean heat, and ocean circulation have all been changing in ways unseen for thousands of years. Arctic sea ice melted significantly more during summers in the last 30 years, and storms are intensifying. Coastal ecosystems stand to be damaged, and coasts will likely erode from rising sea levels, intensified storm surges, and flooding that climate change may amplify. Coastal communities will need to prepare adaptation strategies to cope, and many who li ...
Permalink![]()
![]()
![]()
Space Weather: Welcome, SEC
This video presentation welcomes the Space Weather Prediction Center, formerly known as the Space Environment Center or SEC to the National Weather Service (NWS) as an operational entity of the National Centers for Environmental Prediction (NCEP) family. Describing the ways in which space weather affects global communications and power resources, it demonstrates the importance of space weather forecasting as a part of the NWS family of services. With the inclusion of SWPC, the NWS now provides environmental understanding from the sun to the sea.
Permalink![]()
![]()
![]()
Satellite Feature Identification: Inferring Three Dimensions from Water Vapour Imagery
We think in three-dimensional space and a fourth dimension, time. Therefore, we should think about the atmosphere in similar terms. However, we are often stuck with two-dimensional maps. Water vapor imagery can help us break out of that flatland and move to more dimensions. This imagery holds so much under-utilized potential. We can actually see three-dimensional structures evolving in near-real-time. And if we have a good handle on the current three-dimensional structure, we can then use NWP to its fullest as a verification/interrogation instrument for our 3D mental model. Come see the atmosp ...
Permalink![]()
![]()
![]()
Forecasters' Overview of the Middle East
This lesson provides an introduction to the Middle East for Navy meteorologists. It focuses on the major aspects of synoptic and mesoscale weather patterns, hazards to aviation and maritime operations, geography, oceanography, and climatology. The “Geography” Unit covers major political boundaries, cities, ports, topographical features, rivers, and seismicity. The “Oceanography” Unit includes major bathymetric features, mean sea surface temperature, vertical temperature profiles, salinity and velocity, ocean currents, and tidal ranges. The “Climatology” Unit covers the seasonal climatology of ...
Permalink![]()
![]()
![]()
Extreme High Swell Events on the Moroccan Atlantic Coast
High swell events can develop far from the coast under cyclonic conditions, and take several days to travel to land. If early warnings are not issued, they can take an area by surprise and have a devastating impact. This lesson aims to improve the ability of marine forecasters to forecast extreme marine events related to high swells. It does so by providing background information on winds and waves, and presenting a process for monitoring and forecasting high swell events using a variety of data. These include ASCAT scatterometer wind data and the ECMWF Extreme Forecast Index (EFI) product, wh ...
Permalink![]()
![]()
![]()
Mei-Yu Front, Part 1: Ingredients for Heavy Precipitation and the Forecast Process in Taiwan
This lesson (available in Traditional Chinese) introduces the Mei-Yu Front characteristics and forecasting methodology used by the CWB to forecast precipitation over Taiwan. The lesson discusses the Mei-Yu Front's three-dimensional structure, lifting mechanisms, precipitation patterns and includes cases to help learners practice determining the possible area of heavy rainfall.
Permalink![]()
![]()
![]()
ASMET: Flooding in West Africa
The rainy season in Sahelian West Africa extends from June to September and is tied to the position of the intertropical front. During this period, mesoscale convective systems (MCSs) often produce significant rainfall that can lead to flooding. This module examines an extreme flooding event that occurred in Ouagadougou, Burkina Faso from 31 August to 1 September 2009. Learners assume the role of forecaster, assessing meteorological conditions to see if an MCS will develop that can lead to heavy rain and flooding. They follow a forecast process that emphasizes the use of satellite data, standa ...
Permalink![]()
![]()
![]()
Using Climatology in Forecasting Convection in West and Central Africa
This case-study lesson provides an opportunity to apply the information in the ASMET lesson “Satellite-Derived Climatology Products for Monitoring Convection Over West and Central Africa” to a case that occurred over West and Central Africa in June 2014. It demonstrates how to integrate climatology information with satellite, global instability indices (GII), and NWP data when convection is forecast to occur.
Permalink![]()
![]()
![]()
High-Frequency Radar: Supporting Critical Coastal Operations with Real-time Surface Current Data
Produced in collaboration between NOAA’s National Ocean Service (NOS) US Integrated Ocean Observing System (IOOS) Program Office and The COMET Program, this video explains how high-frequency radar (known as HF radar) is used to provide detailed information in real-time on coastal ocean surface currents. It describes the important role that HF radar products play in critical coastal operations such as hazardous spill response. Finally, it covers basic capabilities and strengths of HF radar as well as how to access coastal current data. Coastal decision-makers and managers across all levels of g ...
Permalink![]()
![]()
![]()
QPF Verification: Challenges and Tools
This module looks at the common challenges and tools with respect to verification of quantitative precipitation forecasts (QPF). Through the use of rich illustrations, animations, and interactions, this module provides an introduction to a variety of methods and approaches for assessing the quality of QPFs. The module examines the need for, and the challenges of verifying precipitation forecasts. An overview is then presented of three verification programs available to most NWS forecast offices: the Hydrometeorological Prediction Center (HPC) verification, the National Precipitation Verificati ...
Permalink![]()
![]()
![]()
Gravity for Geodesy I: Foundations
The first of a two-part series, this 40-50 minute non-narrated interactive lesson is intended to help professionals with basic science background better understand the Earth’s gravity field and what causes its variations. Of particular interest to earth/physical scientists as well as surveying engineers, this lesson covers Newton’s laws with a focus on Earth’s gravity field as it applies to geodesy. After a review of the basics of Newtonian gravitation and gravity, it explores how density, altitude, and latitude affect gravity.
Permalink![]()
![]()
![]()
Low-Level Coastal Jets
Low-level coastal jets occur along many coastlines. Winds may exceed 35 knots and lead to high waves and significant low-level vertical wind shear. Thus, low-level coastal jets present a hazard to both marine and aviation operations in the coastal zone. This core module describes the features of coastal jets and explores the conditions under which they form. Like other foundation modules in the Mesoscale Primer, this module starts with a forecast scenario and concludes with a concise summary and a final exam. By the end of this module, you should have sufficient background to diagnose and fore ...
Permalink![]()
![]()
![]()
Fire Weather Forecasting: Clear Communications, Second Edition
This lesson will introduce National Weather Service (NWS) forecasters to the communication strategies used for decision support services during wildland fire incidents. It also serves as a baseline for practices that leverage unique NWS capabilities to assist land management, firefighting, and emergency management entities in critical decision making. The learners will work through a simulation to see the effects of their communication choices on decisions made by fire personnel. The lesson replaces an earlier edition produced in 2008.
Permalink![]()
![]()
![]()
Gap Winds
This lesson provides a basic understanding of why gap winds occur, their typical structures, and how gap wind strength and extent are controlled by larger-scale, or synoptic, conditions. You will learn about a number of important gap flows in coastal regions around the world, with special attention given to comprehensively documented gap wind cases in the Strait of Juan de Fuca and the Columbia River Gorge. Basic techniques for evaluating and predicting gap flows are presented. The lesson reviews the capabilities and limitations of the current generation of mesoscale models in producing realis ...
Permalink![]()
![]()
![]()
S-290 Unit 2: Topographic Influences on Wildland Fire Behavior
S-290 Unit 2: Topographic Influences on Wildland Fire Behavior provides an overview of how topography affects fuels and the direction and spread of wildland fires. Information on features of topographic maps and estimating slope is also presented. This module is part of the Intermediate Wildland Fire Behavior Course.
Permalink![]()
![]()
![]()
The Role of the MJO in Oceanic and Atmospheric Variability
This Webcast, presented by Dr. Klaus Weickmann of NOAA/CIRES/Climate Diagnostic Center, explores the role that the Madden-Julian Oscillation (MJO) plays in global climate variability. The expert lecture is divided into five sections, which give a short overview of the phenomenon, discuss its relationship with sea surface temperatures, compares composite MJO events to individual occurrences, and touches on the ability of models to predict MJO events.
Permalink![]()
![]()
![]()
SatFC-J: The AMSR2 Microwave Imager
This short lesson describes the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the next-generation polar-orbiting satellite platforms. AMSR2’s primary mission is to improve scientists’ understanding of climate by providing estimates of precipitation, water vapor, cloud water, wind velocity, sea surface temperature, sea ice concentration, snow depth, and soil moisture. AMSR2 also advances weather forecasting through real-time imagery, value-added products, and input to numerical weather prediction. This lesson is part of the Satellite Foundational Course for JPSS (SatFC-J).
Permalink![]()
![]()
![]()
Downscaling of NWP Data
Forecasters utilize downscaled NWP products when producing forecasts of predictable features, such as terrain-related and coastal features, at finer resolution than provided by most NWP models directly. This lesson is designed to help the forecaster determine which downscaled products are most appropriate for a given forecast situation and the types of further corrections the forecaster will have to create. This module engages the learner through interactive case examples illustrating and comparing the major capabilities and limitations of some commonly-used downscaled products for 2-m tempera ...
Permalink![]()
![]()
![]()
Satellite Foundational Course for GOES-R: SatFC-G (SHyMet Full Course Access)
The Satellite Foundational Course for GOES-R (SatFC-G) is a series of nearly 40 lessons designed specifically for National Weather Service (NWS) forecasters and decision makers to prepare for the U.S.’ next-generation geostationary environmental satellites. The course is intended to help learners develop or improve their understanding of the capabilities, value, and anticipated benefits from the GOES-R suite of instruments. These instruments and imagery offer improved monitoring of meteorological, environmental, climatological, and space weather phenomena and related hazards. The course will a ...
Permalink![]()
![]()
![]()
Tropical Mesoscale Convective Systems
Mesoscale Convective Systems (MCSs) occur globally and can account for significant percentages of the annual precipitation in some locations. MCSs are responsible for flooding as well as damaging surface winds in some instances. Thus, it is important for forecasters to understand when, where, and how MCSs develop and maintain themselves. This module covers all modes of MCSs with a strong focus on the tropics and the different aspects that brings to MCS development, maintenance, and structure. It describes conceptual models of MCSs and the dynamical and physical processes that influence their e ...
Permalink![]()
![]()
![]()
Forecasting Sensible Weather from Water Vapour Imagery
Forecaster nowcasting at the synoptic scale is rapidly being replaced by the numerical weather prediction models. However, there are plenty of opportunities for you as a forecaster to improve on those forecasts with simple comparisons of water vapour hand analyses and surface hand analyses. The goal of this lesson is to improve your skills in water vapour and surface analyses to evaluate the three-dimensionality of the atmosphere and thus forecast the sensible weather better. This is the capstone for the entire Satellite Interpretation distance learning course.
Permalink![]()
![]()
![]()
Fog and Stratus Forecast Approaches
This module deals with identifying the characteristics of radiation versus advection fog events, determining which process is dominating, and applying that understanding when making ceiling and visibility forecasts. A forecast approach using a decision tree is also discussed. This decision tree outlines the basic steps involved in applying a thorough forecast approach to fog and stratus events. The module is based on live teletraining sessions offered in 2003 as part of the Distance Learning Aviation Course 1 (DLAC1) on Fog and Stratus Forecasting.
Permalink![]()
![]()
![]()
Wave Life Cycle I: Generation
This is the second in a series of training lessons on marine wind and waves. The first lesson discussed wave types and characteristics and is a good primer to this next marine training topic. Wave Life Cycle I: Generation examines how wind creates waves and the inter-relationships between wind speed, wind duration, and fetch length during this process. These three factors are important to predicting wave height and what will limit wave growth. Additional topics include fully developed seas, observation sources, and various special wind events such as coastal jets and instability mixing in the ...
Permalink![]()
![]()
![]()
Alberta Clipper Case Exercise
This case study focuses on a snow and blowing snow event in the Canadian prairies and US northern high plains on 11-13 November 2003. The key aim of this module is to step through the forecast process during an Alberta Clipper event from the perspective of a forecaster with the Meteorological Service of Canada. This involves consideration of various observations and model guidance, identification of potential areas of snowfall and blowing snow, nowcasting snowfall development and termination, and considering and providing nowcast updates throughout.
Permalink![]()
![]()
![]()
SatFC-J: The VIIRS Imager
This lesson introduces the VIIRS imager on board the Suomi NPP and JPSS satellites. The lesson briefly describes the capabilities, improvements, and benefits that VIIRS brings to operational meteorology. Numerous images are shown that demonstrate a variety of applications available in the AWIPS weather display system. This lesson is part of the Satellite Foundational Course for JPSS (SatFC-J).
Permalink![]()
![]()
![]()
Case Study: A New England Fog Event
This case examines an event that took place over New England and the Mid-Atlantic on 14 June 2001. As the culminating exercise for lessons 1 and 2 of the Distance Learning Aviation Course 1 (DLAC1) on Fog and Stratus Forecasting, its objectives are to 1) identify the preconditions favorable for fog or stratus development; 2) identify synoptic and local processes that influence the event; 3) assess onset time, duration, dissipation, and intensity; and 4) develop a TAF that reflects expected changes in ceiling and visibility. The module is a re-creation of several live teletraining sessions offe ...
Permalink![]()
![]()
![]()
Quality Management Systems: Implementation in Meteorological Services
This one-hour online learning module provides an overview of the key concepts, benefits and principles of an effective quality management system (QMS) based on the ISO 9001:2008 quality management standard. It also introduces guidelines for the successful implementation of a QMS in aviation weather service agencies. Although primarily aimed at management personnel responsible for implementing, monitoring, and updating QMS processes, it also provides a basic introduction to QMS suitable for all agency staff. The first part of this module provides a general overview, introduces key concepts and ...
Permalink![]()
![]()
![]()
Introduction to Tropical Meteorology, 2nd Edition: Chapter 6 Vertical Transport
This chapter examines vertical transport of heat, moisture, momentum, trace gases, and aerosols, including the role of tropical deep convection and turbulence. Diurnal and seasonal variations in surface fluxes and boundary layer depth are examined. The boundary layer is compared over the ocean, humid, and dry tropics, including its role in dispersing chemicals and aerosols. Boundary layer clouds are examined in terms of their connection to sub-cloud layer properties. Comparisons are made between heat and moisture transport under a variety of convective modes such as mesoscale convective system ...
Permalink![]()
![]()
![]()
African Easterly Waves
This module describes characteristics of African easterly waves including horizontal and vertical structure, evolution, speed, frequency, methods of tracking, and their downstream transformation over the Atlantic, Caribbean, and East Pacific. Mechanisms for wave formation are presented. Also explored are differences between waves that develop into tropical cyclones and those that do not. The final sections focus on extratropical interactions and variability of easterly waves.
Permalink![]()
![]()
![]()
Deformation Zone Distribution
The distribution of vorticity centres along an axis of maximum winds follows a fairly predictable pattern based on the characteristics of the flow. By diagnosing these characteristics, the meteorologist is able to quickly deduce the location and relative intensities of the associated vorticity centres as well as the relative sizes of the associated circulations. This information is summarized within the shape and orientation of the associated deformation zones. The deformation zones in turn reveal important details regarding feature motion and thermal advection and thus their diagnosis should ...
Permalink![]()
![]()
![]()
GOES-R Series Faculty Virtual Course: Advanced Baseline Imager
In this webinar recording, Tim Schmit demonstrates the improved temporal, spatial, spectral and calibration attributes of the Advanced Baseline Imager (ABI) on the GOES-R series. The main uses for each of the sixteen spectral bands will be covered, using examples from the recently launched GOES-16 ABI. Imagery and data loops for various types of atmospheric phenomena will be presented to illustrate the improved spectral capabilities and higher temporal and spatial resolution of the ABI. This is a recorded webinar presented by an instructor at his home institution. Audio variations may exist.
Permalink![]()
![]()
![]()
S-290 Unit 12: Gauging Fire Behavior and Guiding Fireline Decisions
S-290 Unit 12: Gauging Fire Behavior and Guiding Fireline Decisions examines how fire behavior is evaluated and changes are identified, and how these changes affect fireline decisions. Topics in this module build upon information covered in previous units and applies it to calculating safety zones, evaluating limitations of suppression efforts, and using tools used to predict fire behavior. The FireLine Assessment MEthod (FLAME) is introduced, and cases are provided to allow learners to apply this method to typical fireline conditions. This module is part of the Intermediate Wildland Fire Beha ...
Permalink![]()
![]()
![]()
Snowmelt Processes: International Edition
Snowmelt is an integral component of the hydrologic forecasting process in many parts of the world. Here, we examine the influences of environmental conditions on snowfall distribution, snowpack structure, snowpack-environment energy exchange, and finally, the rate and amount of snowmelt itself. The fate of snowmelt water after it reaches the ground is also explored.
Permalink![]()
![]()
![]()
Anticipating Hazardous Weather and Community Risk, 2nd Edition
Anticipating Hazardous Weather and Community Risk, 2nd Edition provides emergency managers and other decision makers with background information about weather, natural hazards, and preparedness. Additional topics include risk communication, human behavior, and effective warning partnerships, as well as a desktop exercise allowing the learner to practice the types of decisions required as hazardous situations unfold. This module offers web-based content designed to address topics covered in the multi-day Hazardous Weather and Flood Preparedness course offered by the Federal Emergency Management ...
Permalink![]()
![]()
![]()
An MCS Matrix
This module includes an interactive MCS Matrix of numerical simulations illustrating the physical processes controlling MCS evolution, as well as an archive of the entire Web module, Mesoscale Convective Systems: Squall Lines and Bow Echoes. Patterned after the CD Module A Convective Storm Matrix, the new MCS Matrix provides learners the opportunity for extensive exploration of the relationship between a MCSs environment and its structure. The matrix is composed of 21 four-dimensional numerical simulations based on the interactions of 10 different hodographs with a common thermodynamic profile ...
Permalink![]()
![]()
![]()
GOES-R: Benefits of Next-Generation Environmental Monitoring
This module is an introduction to NOAA's next generation Geostationary Operational Environmental Satellite-R (GOES-R) series, focusing on the value and anticipated benefits derived from an enhanced suite of instruments for improved monitoring of meteorological, environmental, climate, and space weather phenomena and related hazards. An extensive set of visualizations highlight GOES-R and its advanced observing capabilities for providing support in thirteen key environmental application areas including air quality and visibility, climate, cloud icing, fires, hurricanes, land cover, lightning, l ...
Permalink![]()
![]()
![]()
Winds in the Marine Boundary Layer: A Forecaster's Guide
This module is intended for experienced forecasters moving from a land-based area to a coastal or Great Lakes region where both over-land and over-water forecast areas exist. This module highlights the differences between marine boundary layer and terrestrial boundary layer winds. The experienced forecaster is relatively familiar with the boundary layer over land and the associated implications for the wind field. Using this as a base, the module compares this known quantity with the lesser-known processes that occur in the marine boundary layer. Three major topics that influence marine bounda ...
Permalink![]()
![]()
![]()
Atmospheric Dust
Atmospheric dust storms are common in many of the world's semi-arid and arid regions and can impact local, regional, and even global weather, agriculture, public health, transportation, industry, and ocean health. This module takes a multifaceted approach to studying atmospheric dust storms. The first chapter examines the impacts of dust storms, the physical processes involved in their life cycle, their source regions, and their climatology. The second chapter explores satellite products (notably dust RGBs) and dust models used for dust detection and monitoring, and presents a process for fore ...
Permalink![]()
![]()
![]()
Cold Air Damming
Cold Air Damming is part of the Mesoscale Meteorology Primer series. This module first presents a Navy forecast scenario prior to the development of a major cold air damming (CAD) event along the east slopes of the Appalachian Mountains. Then, from a conceptual standpoint, the classic CAD scenario is described in detail, both from an observational and modeling standpoint.
Permalink![]()
![]()
![]()
Met 101: Basic Weather Processes
This lesson provides an overview of basic weather processes, beginning with how the distribution of incoming solar energy helps to establish Earth’s atmospheric circulations. Learners will gain an understanding of the differences between weather and climate, and how Earth’s winds tend to have dominant patterns determined by region. An introduction to atmospheric stability, clouds, precipitation processes, and thunderstorm characteristics is also included, along with an introduction to weather impacts affecting aviation operations.
Permalink![]()
![]()
![]()
GOES-R ABI: Next Generation Satellite Imaging
This extension of the COMET lesson “GOES-R: Benefits of Next Generation Environmental Monitoring” focuses on the ABI instrument, the satellite's 16-channel imager. With increased spectral coverage, greater spatial resolution, more frequent imaging, and improved image pixel geolocation and radiometric performance, the ABI will bring significant advancements to forecasting, numerical weather prediction, and climate and environmental monitoring. The first part of the lesson introduces the ABI's key features and improvements over earlier GOES imagers. The second section lets users interactively ex ...
Permalink