Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
Situational Awareness in The Fire Environment
Maintaining situational awareness is a crucial skill in every decision-support situation. Wildland fires that threaten populated areas have the potential to inflict devastating damage to communities and can also threaten the personnel working on the fire. This lesson introduces the Situational Awareness Cycle. Learners practice using it to continuously monitor and adapt their support strategies and decision-support information depending on the rapidly evolving wildfire conditions. The lesson also discusses a range of tools that can be used to build and maintain situational awareness.
Available online: https://www.meted.ucar.edu/training_module.php?id=1391
Published by: The University Corporation for Atmospheric Research ; 2018
Maintaining situational awareness is a crucial skill in every decision-support situation. Wildland fires that threaten populated areas have the potential to inflict devastating damage to communities and can also threaten the personnel working on the fire. This lesson introduces the Situational Awareness Cycle. Learners practice using it to continuously monitor and adapt their support strategies and decision-support information depending on the rapidly evolving wildfire conditions. The lesson also discusses a range of tools that can be used to build and maintain situational awareness.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Satellite Feature Identification: Atmospheric Rivers
The Satellite Feature Identification: Atmospheric Rivers lesson presents the global moisture transport phenomenon known as the Atmospheric River (AR). ARs are responsible for transporting the majority of maritime moisture from low to middle latitudes. Advanced satellite products, including Integrated Water Vapor and Total Precipitable Water, provide excellent observations of AR development and evolution. This lesson demonstrates the usefulness of these products in forecasting the impacts of ARs, especially when they are combined with numerical weather prediction products. Several AR case studi ...
Available online: https://www.meted.ucar.edu/training_module.php?id=904
Published by: The University Corporation for Atmospheric Research ; 2012
The Satellite Feature Identification: Atmospheric Rivers lesson presents the global moisture transport phenomenon known as the Atmospheric River (AR). ARs are responsible for transporting the majority of maritime moisture from low to middle latitudes. Advanced satellite products, including Integrated Water Vapor and Total Precipitable Water, provide excellent observations of AR development and evolution. This lesson demonstrates the usefulness of these products in forecasting the impacts of ARs, especially when they are combined with numerical weather prediction products. Several AR case studies highlight the importance of using satellite information regarding ARs and allow the user to practice forecasting their impacts. This lesson is part of the series: "Dynamic Feature Identification: The Satellite Palette".
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Extratropical cyclone ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
The Balancing Act of Geostrophic Adjustment
This 7-page module provides a primer on geostrophic adjustment concepts. It discusses their application for understanding and forecasting real weather features, interpreting model forecasts, and recognizing the type and duration of impact that observations exert on the model forecast. The module also includes an interactive Exercises section.
Available online: https://www.meted.ucar.edu/training_module.php?id=54
Published by: The University Corporation for Atmospheric Research ; 2002
This 7-page module provides a primer on geostrophic adjustment concepts. It discusses their application for understanding and forecasting real weather features, interpreting model forecasts, and recognizing the type and duration of impact that observations exert on the model forecast. The module also includes an interactive Exercises section.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Weather and Health
This course will help meteorologists and others broaden their understanding of the impacts of weather and climate on public health, including the impacts of heat waves and cold temperatures, winter storms and thunderstorms, flooding, drought, poor air quality, tornadoes, hurricanes, wildfire, UV radiation, and others. This course is directed to broadcast meteorologists, in particular, who play a critical role in the community by helping the public to protect against weather-related health threats and by promoting good health. The course also describes the public health communication system, pr ...
Available online: https://www.meted.ucar.edu/training_module.php?id=507
Published by: The University Corporation for Atmospheric Research ; 2008
This course will help meteorologists and others broaden their understanding of the impacts of weather and climate on public health, including the impacts of heat waves and cold temperatures, winter storms and thunderstorms, flooding, drought, poor air quality, tornadoes, hurricanes, wildfire, UV radiation, and others. This course is directed to broadcast meteorologists, in particular, who play a critical role in the community by helping the public to protect against weather-related health threats and by promoting good health. The course also describes the public health communication system, providing information about reliable public health services, tools, and resources.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climate change ; Wildfire ; Air quality ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Training Tutorials and Datasets for GOES-R/JPSS New Generation Satellite Aerosol Products
These free training resources include video tutorials as well as case studies with accompanying data and imagery. The resources introduce the new generation of aerosol products available from the JPSS series of polar-orbiting satellites (SNPP/VIIRS) and the GOES-R series of geostationary satellites (GOES-16/ABI). Users will learn about the types of satellite aerosol products available, including aerosol optical depth/thickness (AOD/AOT) and aerosol detection (smoke/dust masks), as well as complimentary satellite products, such as fire radiative power (FRP) hotspots and visible color imagery (R ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1378
Published by: The University Corporation for Atmospheric Research ; 2017
These free training resources include video tutorials as well as case studies with accompanying data and imagery. The resources introduce the new generation of aerosol products available from the JPSS series of polar-orbiting satellites (SNPP/VIIRS) and the GOES-R series of geostationary satellites (GOES-16/ABI). Users will learn about the types of satellite aerosol products available, including aerosol optical depth/thickness (AOD/AOT) and aerosol detection (smoke/dust masks), as well as complimentary satellite products, such as fire radiative power (FRP) hotspots and visible color imagery (RGBs). The emphasis is on operational applications for air quality, particularly fires/smoke and haze. The satellite aerosol product training resources are developed and maintained by the NOAA Satellite Air Quality Proving Ground (AQPG) project and are not produced, owned or hosted by UCAR/COMET.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Satellite ; Weather forecasting ; Air quality ; Remote sensing ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Introduction to the NWS National Blend of Global Models
The National Blend of Global Models was developed to utilize the best available science and provide a consistent National Weather Service forecast product across the U.S. This lesson describes the background and motivation for the National Blend and includes comparisons of Blend forecasts with current guidance. The lesson also offers a short summary of future plans and training related to the National Blend.
Permalink![]()
![]()
![]()
Runoff Processes: International Edition
The Runoff Processes module offers a thorough introduction to the runoff processes critical for flood and water supply prediction. This module explains key terminology and concepts including the following: types of runoff, paths through which water becomes runoff, basin and soil properties that influence runoff, and numerical runoff modeling. Examples of popular runoff models are also discussed.
Permalink![]()
![]()
![]()
Writing Effective TAFs
This module provides an overview of some of the applicable TAF Amendment and Conditional Group usage rules, as presented in the latest version of the National Weather Service Instruction 10-813 on TAF directives. It also presents a methodology for TAF writing and development that will lead to an effective and user-friendly product. The focus is on the ceiling and visibility aspects of the TAF. This module is part of the Distance Learning Course 1: Forecasting Fog and Low Stratus.
Permalink![]()
![]()
![]()
Recognition and Impact of Vorticity Maxima and Minima in Satellite Imagery
Vorticity maxima and minima signatures are common features of the atmosphere. They indicate areas of ascending and descending circulation and atmospheric forcing and can be used to diagnose dynamic features such as the axis of maximum winds and deformation zones. This module provides insight on the analysis of these dynamic atmospheric features using Meteosat Second Generation (MSG) satellite imagery. The module is an adaptation of Phil Chadwick's work from the series of modules in "Dynamic Feature Identification: The Satellite Palette".
Permalink![]()
![]()
![]()
Writing TAFs for Ceilings and Visibility, Africa Edition
Writing TAFs for Ceilings and Visibility, Africa Edition outlines the processes for developing an effective Terminal Aerodrome Forecast (TAF) that meets International Civil Aviation Organization (ICAO) guidelines. Geared specifically to forecasters in Africa, the lesson includes a case study for an event impacting Cape Town International Airport to provide practice applying the processes to real-life forecast situations.
Permalink![]()
![]()
![]()
Mesoscale Banded Precipitation
Precipitation frequently falls and accumulates in discrete bands with accumulations that vary markedly over short distances. This module examines several mechanisms that result in mesoscale banded precipitation, focusing primarily on processes at work in midlatitude cyclones. The module starts with a review of the Norwegian and conveyor belt cyclone models. Then several banding processes are examined in detail, including deformation/frontogenesis, the Trowal (Trough of Warm Air Aloft), frontal merger, CSI/slantwise convection, and melting/evaporation-induced circulations. The module concludes ...
Permalink![]()
![]()
![]()
Assessing NWP with Water Vapour Imagery
You've seen it happen repeatedly. Forecasters have a tough forecast ahead of them. But how are they supposed to know which model data will be the best one to help them come to a conclusion about the situation? In situations like this, the first step should always be to assess the model data against a set of current observations that should show a 1-to-1 relationship with the model output. Which variable should be plotted? On which surface? Which current observations will make the most sense to assess against? If you know the answers to some, but not all of these questions, find these answers a ...
Permalink![]()
![]()
![]()
Operational Models Encyclopedia
The availability of numerical guidance from NWP models has been an important component of operational forecasting for decades. For many, the output from this numerical guidance was produced by a mysterious “black box”. Rules for using and adjusting the guidance for operational forecasters were often subjective “Rules of Thumb” based on experience rather than based on quantitative analysis. To open up this “black box”, we produced this web-based “Operational Models Encyclopedia” linking both generic information on how NWP models work, and specifics on physical parameterizations, dynamics, and d ...
Permalink![]()
![]()
![]()
S-290 Unit 3: Fuels
S-290 Unit 3: Fuels covers the effects of fuels on fire behavior and the terminology for describing fuel characteristics, as well as fuel models used for classification. This module is part of the Intermediate Wildland Fire Behavior Course.
Permalink![]()
![]()
![]()
What's New in the National Blend of Models version 3.1
Intended for U.S. National Weather Service forecasters, this short video describes changes to the NWS National Blend of Models when it was updated to v3.1. These changes include: More global, mesoscale, and ensemble components; Increased spatial resolution of some components; New and improved weather elements for aviation, QPF, winter, fire, and marine weather forecasting; Significant wave height for offshore waters and the Great Lakes; Improved bias correction; MOS-like text products; Shortened NBM forecast projections delivered at 19 UTC. For an illustrated transcript, see What’s New in NBM ...
Permalink![]()
![]()
![]()
Introduction to Observing Oil from Helicopters and Planes
Aircrews and pilots are frequently the first to see oil spills on water. They provide critical eyes in the sky for U.S. Coast Guard (USCG) response teams and NOAA's Office of Response and Restoration. Oil spill responders use a common terminology for describing and reporting oil spills. This lesson teaches aircrews how to identify, describe, and report spills using that terminology. Misidentifying natural events as oil spills is a common, and sometimes expensive, mistake. This lesson also points out common false positives when trying to identify oil spills. While our primary audience for this ...
Permalink![]()
![]()
![]()
Typhoon QPF in Taiwan
This lesson (available in Chinese) introduces the typhoon QPF forecasting methodology used by the CWB, including the role played by the analogue method and the typhoon rainfall climatology model in Taiwan. The lesson discusses the advantages and limitations of the Ensemble Typhoon QPF model, and includes a case to help learners practice interpreting this guidance and summarizing it to Emergency Operation Centers. The lesson also highlights the need to use probabilistic forecasts instead of deterministic forecasts in order to account for the uncertainties associated with typhoon forecasting.
Permalink![]()
![]()
![]()
Forecasting Tropical Cyclone Storm Surge
This lesson introduces forecasters to the various probabilistic guidance products used by the National Hurricane Center to forecast storm surge. It provides an overview of how these probabilistic surge products are created, their purposes, and why they are preferred to deterministic-only style guidance for specific events. The lesson also provides practice in correctly interpreting probabilistic storm surge guidance at various phases of an event. Basic familiarity with probabilistic forecast guidance is required. This online lesson is part of the Tropical Cyclone Storm Surge: Forecasting and C ...
Permalink![]()
![]()
![]()
The Amazon Rain Forest and Climate Change
This module discusses global climate change that is occurring largely because of greenhouse gases emitted by human activities, and in particular the impact that tropical deforestation plays in the climate system. It also covers signs of climate change, the current thinking on future changes, and international agreements that are attempting to minimize the effects of climate change. The United Nations Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (UN-REDD Programme) is also discussed.
Permalink![]()
![]()
![]()
Introduction to Meteorological Charting
This lesson provides a brief overview of surface and upper-air data and how these data are plotted on meteorological charts. The content introduces various charting and reporting techniques, including station models, contour analyses, streamlines, and upper air maps. Examples cover both the Northern Hemisphere and Southern Hemisphere and provide learners with opportunities to practice recognizing frequently used weather symbols. Supplemental materials include three Weather Symbol Identification drills. Completing these drills may require approximately 1-1.5 hours above the length of time estim ...
Permalink![]()
![]()
![]()
MJO, Equatorial Waves, and Tropical Cyclogenesis
This case study focuses on monitoring of the MJO and equatorial waves and their role in tropical cyclogenesis. Learners will use conceptual models to understand the structure of the MJO and equatorial waves. They will identify and monitor those circulations using geostationary satellite images. 850-hPa synoptic analysis is used to track equatorial Rossby and mixed Rossby-gravity waves. Focus is on May 2002, a period when an MJO and associated equatorial waves spawned sets of twin cyclones over the Indian Ocean. This case study is similar to a synoptic meteorology laboratory exercise but is des ...
Permalink![]()
![]()
![]()
Model Fundamentals - version 2
Model Fundamentals, part of the Numerical Weather Prediction Professional Development Series and the "NWP Training Series: Effective Use of NWP in the Forecast Process", describes the components of an NWP model and how they fit into the forecast development process. It also explores why parameterization of many physical processes is necessary in NWP models. The module covers background concepts and terminology necessary for learning from the other modules in this series on NWP. Back in 2000, the subject matter expert for this module was Dr. Ralph Petersen of the National Centers for Environmen ...
Permalink![]()
![]()
![]()
Understanding Drought
Understanding Drought--This webcast provides an introduction to drought. It presents the measures and scales of drought and how drought is monitored. It also covers how drought is predicted, the impacts of drought, and provides information about drought-related resources. This content serves as a foundation to learning more about climate variability and operational climate services and prepares users for the national implementation of NIDIS. This module was last updated on Sept 28, 2009.
Permalink![]()
![]()
![]()
Mesoscale Meteorology Effects on Fire Behavior
The “Mesoscale Meteorology Effects on Fire Behavior” module reviews the development of thermally forced winds in complex terrain and explores how these winds combine with the effects of terrain to influence fire spread. Three-dimensional conceptual animations illustrate these effects through a 24-hr period, as members of the team working this theoretical fire describe different aspects of weather, fire behavior, and operational fire fighting decisions at specific times during this day. This module is part of the Advanced Fire Weather Forecasters Course.
Permalink![]()
![]()
![]()
ASMET: Satellite Precipitation Products for Hydrological Management in Southern Africa
This module introduces a variety of meteorological and hydrological products that can improve the quality of heavy rainfall forecasts and assist with hydrological management during extensive precipitation events in Southern Africa. Among the products are the satellite-based ASCAT, SMOS, and ASAR GM soil moisture products and the hydro-estimator. The products are presented within the context of a case, the flooding of South Africa's Vaal Dam region in 2009/2010.
Permalink