Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
Quasi Geostrophic Omega Equation
This learning object/widget is designed for upper-level undergraduates or forecaster interns who want to apply their knowledge of the Quasi-geostrophic Omega Equation to forecast situations. The interactivity helps users see how each variable interacts within the equation and shows data for different phase shifts of 500hPa and 1000hPa heights. Instructors can use this learning object with their own question sets as well to build more understanding and application into their dynamics/synoptic course.
Available online: https://www.meted.ucar.edu/training_module.php?id=1125
Published by: The University Corporation for Atmospheric Research ; 2014
This learning object/widget is designed for upper-level undergraduates or forecaster interns who want to apply their knowledge of the Quasi-geostrophic Omega Equation to forecast situations. The interactivity helps users see how each variable interacts within the equation and shows data for different phase shifts of 500hPa and 1000hPa heights. Instructors can use this learning object with their own question sets as well to build more understanding and application into their dynamics/synoptic course.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
VLab's Conceptual Models for Southern Hemisphere
Conceptual Models for Southern Hemisphere is a joint project between four southern hemispheric regions: Argentina, Australia, Brazil and South Africa. The purpose of the project is to improve warnings and awareness of weather risks through the better understanding of weather through conceptual models. The objectives of the project are to produce and make available resources about Conceptual Models. These resources are available for other training institutions within the regions as well. The number of southern hemispheric conceptual models in this catalogue will increase stepwise in the near fu ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1152
Published by: The University Corporation for Atmospheric Research ; 2014
Conceptual Models for Southern Hemisphere is a joint project between four southern hemispheric regions: Argentina, Australia, Brazil and South Africa. The purpose of the project is to improve warnings and awareness of weather risks through the better understanding of weather through conceptual models. The objectives of the project are to produce and make available resources about Conceptual Models. These resources are available for other training institutions within the regions as well. The number of southern hemispheric conceptual models in this catalogue will increase stepwise in the near future. Currently the catalogue includes eight Conceptual Model descriptions. All models contain six components: Appearance in Satellite Images, Meteorological-Physical Background, Key Parameters, Appearance in Vertical Cross Sections, Weather Events and References. This resource is made available courtesy of Virtual Laboratory for Training and Education in Satellite Meteorology (VLab) and is not produced, owned or hosted by UCAR/COMET.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Introduction to Statistics for Climatology
The effective use of climate data and products requires an understanding of what the statistical parameters mean and which parameters best summarize the data for particular climate variables. This module addresses both concerns, taking a two-pronged approach: 1) focusing on the statistical parameters (mean, median, mode, extreme values, percent frequency of occurrence and time, range, standard deviation, and data anomalies), defining what they mean and how they are calculated using climate data as examples, and 2) focusing on weather and climate variables, identifying the statistical parameter ...
Available online: https://www.meted.ucar.edu/training_module.php?id=500
Published by: The University Corporation for Atmospheric Research ; 2008
The effective use of climate data and products requires an understanding of what the statistical parameters mean and which parameters best summarize the data for particular climate variables. This module addresses both concerns, taking a two-pronged approach: 1) focusing on the statistical parameters (mean, median, mode, extreme values, percent frequency of occurrence and time, range, standard deviation, and data anomalies), defining what they mean and how they are calculated using climate data as examples, and 2) focusing on weather and climate variables, identifying the statistical parameters that best represent each one. The module concludes with a discussion of data quality and its impact on weather and climate products. The module is intended for forecasters and others interested in improving their understanding of the basic statistics used in climate products so they can make better use of climatology products for planning and operational purposes. Basic knowledge of meteorology is beneficial although not required. This module is part of COMET’s Climatology for Forecasters series.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climatology ; Statistics ; Climate services ; Lesson/ Tutorial ; Competencies for Provision of Climate Services
Add tag
No review, please log in to add yours !
![]()
![]()
Thermally-forced Circulation I: Sea Breezes
This module describes the phenomena of the sea breeze. It examines factors that lead to the formation of a sea breeze, modifying effects on sea breeze development, how mesoscale NWP models handle sea breezes, and sea breeze forecast parameters. The module places instruction in the context of a sea breeze case from Florida and compares surface and satellite observations to a model simulation using the AFWA MM5. Like other modules in the Mesoscale Meteorology Primer, this module comes with audio narration, rich graphics, and a companion print version.
Available online: https://www.meted.ucar.edu/training_module.php?id=8
Published by: The University Corporation for Atmospheric Research ; 2002
This module describes the phenomena of the sea breeze. It examines factors that lead to the formation of a sea breeze, modifying effects on sea breeze development, how mesoscale NWP models handle sea breezes, and sea breeze forecast parameters. The module places instruction in the context of a sea breeze case from Florida and compares surface and satellite observations to a model simulation using the AFWA MM5. Like other modules in the Mesoscale Meteorology Primer, this module comes with audio narration, rich graphics, and a companion print version.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Marine meteorology ; Convection ; Lesson/ Tutorial ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
Flood Frequency Analysis: International Edition
Flood frequency analysis uses historical flow records to both estimate the frequency with which floods of a certain magnitude may occur and predict the possible flood magnitude over a certain time period. This module offers a thorough introduction to appropriately constructing the necessary historical data series, calculating the flooding probabilities, and gauging the reliability of the resulting probability values. Methods for assessing flood frequency in basins with limited data are also discussed.
Available online: https://www.meted.ucar.edu/training_module.php?id=802
Published by: The University Corporation for Atmospheric Research ; 2010
Flood frequency analysis uses historical flow records to both estimate the frequency with which floods of a certain magnitude may occur and predict the possible flood magnitude over a certain time period. This module offers a thorough introduction to appropriately constructing the necessary historical data series, calculating the flooding probabilities, and gauging the reliability of the resulting probability values. Methods for assessing flood frequency in basins with limited data are also discussed.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Hydrology ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
SatFC-G: GOES-R Impacts on Satellite Data Assimilation
This five minute lesson presents a brief overview of how GOES-R observations are expected to support and potentially enhance NWP for various analysis and forecast applications. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Permalink![]()
![]()
![]()
Introduction to Climate Models
This module explains how climate models work. Because the modeling of both weather and climate share many similarities, the content throughout this module draws frequent comparisons and highlights the differences. We explain not only how, but why climate models differ from weather models. To do so, we explore the difference between weather and climate, then show how models are built to simulate climate and generate the statistics that describe it. We conclude with a discussion of models are tuned and tested. Understanding how climate responds to changes in atmospheric composition and other fac ...
Permalink![]()
![]()
![]()
Two Right Feet? Understanding the Difference Between U.S. Survey Feet and International Survey Feet
This video explains the difference between the U.S. survey foot (sFT) and the international survey foot (iFT) and the importance of this distinction when working with map projections. It will be helpful to surveyors, planners and anyone who needs to convert map coordinates from meters to feet. This resource is hosted on COMET's YouTube Channel.
Permalink![]()
![]()
![]()
Satellite Feature Identification: Cyclogenesis
This lesson, Satellite Feature Identification: Cyclogenesis, uses water vapor satellite imagery to present a satellite perspective of basic features associated with the formation and development of extratropical cyclones. First, through an initial case study, the precursor elements leading to cyclogenesis are identified. Then three conceptual views of different ways cyclogenesis can evolve are presented along with additional examples to illustrate the concepts. Finally a series of exercises, again using real case studies, are used to emphasize the important points and provide realistic scenari ...
Permalink![]()
![]()
![]()
Fire Weather Climatology
The “Fire Weather Climatology” module provides a comprehensive look at fire regions across the United States and characteristics of typical fire seasons in each region. In addition, critical fire weather patterns are described in terms of their development, duration and impact on fire weather. Numerous case studies provide examples and opportunities to practice recognizing these critical patterns and how they can affect fire ignition and spread. This module is part of the Advanced Fire Weather Forecasters Course.
Permalink![]()
![]()
![]()
Microwave Remote Sensing Resources
This module provides background information on microwave remote sensing with polar-orbiting satellites. It reviews coverage, orbits, and data latency issues of current operational and selected research satellites and notes improvements expected in the NPP and NPOESS era. The module contrasts active vs. passive remote sensing, discusses advantages and limitations of different microwave instrument scanning strategies, and addresses viewing geometry with implications for spatial resolution and swath coverage. Finally, it offers a review of the microwave spectrum and special characteristics of mic ...
Permalink![]()
![]()
![]()
Techniques in Hydrologic Forecast Verification
This module demonstrates techniques for developing a hydrologic forecast verification effort. Although it can be taken as stand-alone training, the module on Introduction to Verification of Hydrologic Forecasts is intended a useful prerequisite. Through the use of rich illustrations, case study examples, and review questions, this module provides an example of developing a verification effort using NWS verification tools. Two case studies will be highlighted that both look at the primary question of whether QPF input to hydrologic models improves the hydrologic forecasts. Related questions of ...
Permalink![]()
![]()
![]()
JPSS River Ice and Flood Products
This lesson introduces hydrologists, meteorologists, and the education community to two new JPSS (Joint Polar Satellite System) satellite capabilities for monitoring river ice and flooding. It begins by describing the need for information on river ice and flooding, the capabilities of the Suomi NPP and future JPSS VIIRS imagers to provide products for monitoring river conditions, and the new river ice and flood products. This is followed by several cases, notably the May 2013 Galena, AK flood event, that demonstrate the use and value of the products in monitoring river ice and related flooding ...
Permalink![]()
![]()
![]()
Advanced Himawari Imager (AHI): What’s Different from the GOES-R Advanced Baseline Imager (ABI)
This brief lesson provides an overview of the AHI on Himawari and highlights its differences from the GOES-R Advanced Baseline Imager (ABI). It discusses AHI’s improved capabilities in spectral coverage, spatial resolution, and imaging interval over the MTSAT-2 imager; the differences in spectral coverage and scan strategy between AHI and ABI and the impact on products; and how AHI data and products benefit forecasters in Alaska, Pacific Region, and CONUS. Note that the lesson complements COMET’s GOES-R ABI lesson, which should be taken before going through this lesson.
Permalink![]()
![]()
![]()
Flash Flood Processes
According to NOAA’s National Weather Service, a flash flood is a life-threatening flood that begins within 6 hours--and often within 3 hours--of a causative event. That causative event can be intense rainfall, the failure of a dam, levee, or other structure that is impounding water, or the sudden rise of water level associated with river ice jams. The “Flash Flood Processes” module offers an introduction to the distinguishing features of flash floods, the underlying hydrologic influences and the use of flash flood guidance (FFG) products. Through use of rich illustrations, animations, and inte ...
Permalink![]()
![]()
![]()
NCAR Climate Data Guide
The Climate Data Guide provides concise and reliable information on the strengths and limitations of the key observational data sets, tools and methods used to evaluate Earth system models and to understand the climate system. Citable expert commentaries are authored by experienced data users and developers, enabling scientists to multiply the impacts of their work and the diverse user community to access and understand the essential data. This resource is made available courtesy of NCAR's Climate and Global Dynamics Division and is not produced, owned or hosted by UCAR/COMET.
Permalink![]()
![]()
![]()
Instrumentation and Measurement of Atmospheric Temperature
This lesson offers a comprehensive overview of temperature measurement as related to the atmosphere, bodies of water, soils, and other parts of Earth’s surface. The lesson begins by defining temperature and why it is an important property to characterize. It provides details about the properties and characteristics of sensors used for temperature measurements and the advantages and disadvantages of different sensors depending on the application. Lastly, the lesson outlines the methods used for measuring different types of temperature, from soil to the free atmosphere.
Permalink![]()
![]()
![]()
Preparing to Evaluate NWP Models
This lesson prepares the forecaster to evaluate NWP analyses and forecasts using physically based conceptual models of the atmosphere, and the "Vertical Phenomenon Analysis Funnel". This funnel divides the atmosphere into three sections: lower stratosphere and tropopause, mid-to-upper troposphere, and lower troposphere. We discuss tools to use and atmospheric features to assess for each section of the atmosphere, using interactive case examples, and summarize the methodology with a comprehensive example. Finally, we compare model capabilities and the time and space scales of assessment tools u ...
Permalink![]()
![]()
![]()
Local Influences on Fog and Low Stratus
Local and mesoscale influences can make or break your fog or stratus forecast. Influences of local water bodies, terrain, vegetation, soil characteristics, and coastal features on the lower atmosphere can play a vital role in the development, duration, and intensity of these events. As part of the Distance Learning Course 1: Forecasting Fog and Low Stratus, this module examines several of these influences and discusses how they enhance or inhibit a fog or stratus event.
Permalink![]()
![]()
![]()
Satellite Monitoring of Atmospheric Composition
Satellite monitoring of atmospheric composition provides important information for a number of applications, including stratospheric ozone monitoring, long-range pollutant transport, biomass burning, air quality monitoring and forecasting, and climate change. This module provides an overview of the use of satellites in these application areas, the measurement techniques used, and the development of related operational services. In addition, the module covers a short history of European and U.S. satellite missions, as well as a look at future missions planned for monitoring atmospheric composit ...
Permalink![]()
![]()
![]()
Forecasting Heavy Rains and Landslides in Eastern Africa
Good rainfall draws many people to settle across the eastern Africa highlands for farming and other businesses. However, factors such as steep terrain, logging, livestock grazing, agriculture, and construction, have increased erosion and contributed to less stable slopes. These factors can lead to devastating landslides and mudslides, especially during episodes of very heavy rain. Forecasting and monitoring heavy rainfall is challenging, especially in mountainous regions that have few surface observations. This make satellite data critical for meteorologists and hydrologists forecasting for th ...
Permalink![]()
![]()
![]()
The Impact of Weather on Air Traffic Management
This module focuses on the National Airspace System (NAS) and how weather affects it. It describes the various components of the Federal Aviation Administration (FAA), how that organization manages air traffic, and how CWSU and WFO forecasts help the FAA's decision-making process. The module also provides tips on establishing a good professional relationship with this important partner (FAA), understanding their language, and preparing weather briefings that will give them the information they need. This module is part of a larger exercise to develop a station Weather Impacts Playbook, a suppl ...
Permalink![]()
![]()
![]()
Web-Based Ensemble Tools: Ensemble Situational Awareness Table
The National Weather Service (NWS) Western Region (WR) has developed a Ensemble Situational Awareness Table (ESAT), which uses probabilistic NWP to bring attention to the potential for extreme events, especially in middle-range forecasts. The lesson, which is the first of two on the ESAT, describes the ESAT and how its data can be used to support assessment of extreme weather event forecasts. Additionally, statistical methods, including employment of reanalysis and NWP model climatologies (R-Climate and M-Climate, respectively) are described in reference to the products available in the ESAT.
Permalink![]()
![]()
![]()
Instrumentation and Measurement of Atmospheric Pressure
This lesson provides information about current science and technologies for measuring atmosphere pressure. The lesson begins by reviewing the key physical laws governing atmospheric pressure, including Dalton's Law of Partial Pressures. Then, it explores typical requirements and uncertainty parameters related to atmospheric pressure sensors and provides details about the components of pressure sensors, including fluidic, mechanical, and electronic transducers. The lesson is part of the Instrumentation and Measurement of Atmospheric Parameters course series.
Permalink![]()
![]()
![]()
Introduction to Tropical Meteorology, 2nd Edition, Chapter 1: Introduction
This chapter introduces learners to tropical meteorology including various methods of defining the tropics. An overview of energy balance and the global climate system is presented. The role of the tropics in the global energy and momentum balance is presented. Atmospheric structure of temperature and humidity are discussed in terms of latitudinal variability. Pressure ranges and scales of atmospheric motion in the tropics are reviewed. Seasonal and geographic distribution and the diurnal cycle of surface temperature and the influencing factors are examined in detail. Finally, we review tropic ...
Permalink![]()
![]()
![]()
In-depth Physics Lessons
This collection of four condensed physics lessons is offered as a companion to our Physics of the Aurora: Earth Systems learning module, and has been developed especially for use by university physics educators. The lesson topics are Charged Particle Motions, Magnetic Force, the Frozen-field Theorem, and Static Atmospheres. Each short, self-contained lesson can be accessed independently and includes interactive formula derivations, exercises, and open-ended questions suitable for classroom discussion or out-of-class assignments.
Permalink![]()
![]()
![]()
Slantwise Convection Case Exercise
This exercise examines an event that took place in the 24 hour time period beginning at 18Z, Dec 31, 2000 in southern British Columbia, Canada and northern Washington/Idaho, United States. This is a companion piece to the COMET Webcast, Slantwise Convection: An Operational Approach.
Permalink![]()
![]()
![]()
Introduction to Ensemble Prediction
This webcast is a shorter companion to the Ensemble Prediction Explained module, focusing more directly on immediate operational needs. Introductory content includes the role of ensemble forecasts, presentation of basic ensemble forecasting terms, and discussion of how ensemble prediction systems (EPSs) are created. The largest section is focused on common ensemble forecast products, including how they differ from traditional NWP products, how we interpret ensemble forecast products, the advantages and limitations of each product, how EPS products are verified, and how to use ensemble products ...
Permalink![]()
![]()
![]()
Tropical-Extratropical Air Mass Interactions in South America
Case studies of tropical-extratropical air mass interactions over South America are presented in this module. Synoptic features associated with cold air intrusion into tropical latitudes and the incursion of humid, tropical air masses into midlatitudes are identified. Conceptual models illustrate the synoptic environments and the role of the Andes in the meridional movement of air masses. Forecast challenges are presented for different periods of each case. Finally, the weather impacts associated with these contrasting air-mass incursions are explored.
Permalink![]()
![]()
![]()
Quantitative Precipitation Forecasting Overview
In this module, Wes Junker, retired Senior Branch Forecaster at NCEP/HPC provides an introduction to Quantitative Precipitation Forecasting. This presentation assumes a familiarity with basic meteorological processes.
Permalink![]()
![]()
![]()
Climate Change and Regional Impacts
This short module is an overview of the different effects climate change produces in different regions of the United States. In addition to discussing impacts already being experienced, the module presents information on how climate scientists use specialized models and statistical techniques to estimate how regional climates are likely to change in the future.
Permalink![]()
![]()
![]()
Imaging with VIIRS: A Convergence of Technologies and Experience, 2nd Edition
This module introduces the VIIRS imager that was launched on the Suomi NPP (National Polar-orbiting Partnership) satellite in October 2011 and will fly on future U.S. JPSS weather satellites. The VIIRS imager has many advanced features that improve both spectral and spatial resolution. Together with modernized data communication and processing systems, VIIRS will provide consistent, high quality, and high resolution data to users. The module covers the enhanced capabilities of VIIRS by examining the systems that contributed to its development. Special attention is paid to the Day/Night Visible ...
Permalink![]()
![]()
![]()
Supporting Military Emergency Response During Hazardous Releases
This module is primarily intended for AFWA and other military forecasters. It explains the basics of how hazardous materials are dispersed in the atmosphere and how emergency responders and others model the transport and impact of the materials. The goal is to acquaint forecasters with the inputs needed for modeling and to encourage them to be proactive in providing their site-specific knowledge to improve dispersion predictions.
Permalink![]()
![]()
![]()
Communicating Impacts and Mitigation for Wind Chill and Extreme Cold
Extremely cold air comes every winter to at least part of the United States and affects millions of people. Arctic air and brisk winds can lead to dangerously cold wind chill values, resulting in frostbite and hypothermia. About 63% of weather-related deaths in the U.S. result from exposure to excessive cold and/or hypothermia. Extreme cold can also lead to significant damage to buildings and infrastructure, resulting in $500-million in average annual insured losses. This lesson describes the potential impacts of cold wind chill values and extremely cold temperatures, and explores ways forecas ...
Permalink![]()
![]()
![]()
EUMeTrain's Manual of Synoptic Satellite Meteorology
The Manual of Synoptic Satellite Meteorology, or SatManu, provides detailed descriptions of approximately fifty atmospheric conceptual models at different scales from a satellite point of view. Each conceptual model has associated exercises and many have case studies that show how the models can be applied. Most of the case studies were developed for specific training courses in Europe. SatManu also has case studies of catastrophic weather events which are presented from the perspective of the conceptual models. In addition, an introductory chapter describes the different satellite channels. T ...
Permalink![]()
![]()
![]()
Snowmelt Processes
This module helps the student develop an understanding of the contribution of snowmelt in the hydrologic forecasting process. The module first explains the influences of wind, sun, terrain, and vegetation on snow water distribution and then discusses the evolution of snowpack characteristics. From there, the student will learn about energy exchanges between the snow and the atmosphere and how that affects how quickly and how completely snow will melt. Finally, an explanation is presented of water flow through snow and the fate of that water when it reaches the ground surface. The lesson will b ...
Permalink![]()
![]()
![]()
Tropical Severe Local Storms
The module provides a brief overview of severe local storms in the tropics. Basic ingredients for thunderstorms and assessment of thunderstorm potential from soundings are described. Then properties and hazards of ordinary thunderstorms, multicellular thunderstorms, supercells are reviewed. Conditions conducive to supercell formation in the tropics are examined along with methods of identifying them in radar and satellite images. Supercell and non-supercell tornado properties and formation are described. Finally, tornadoes, waterspouts, and dust devils properties are compared.
Permalink![]()
![]()
![]()
GOES-R Series Faculty Virtual Course: Multispectral RGB Composites
In this webinar recording Dr. Emily Berndt and Dr. Michael Folmer discuss the capabilities of the GOES-R/16 Red-Green-Blue (RGB) composites. Multispectral or RGB composites are qualitative, false color images designed to enhance specific features in the atmosphere that are important to forecasters, aviators, mariners, and emergency response officials. RGB composites have been enthusiastically integrated into forecast operations because of their ability to highlight the presence and evolution of important forecast phenomena. This presentation details the development of RGB composites and provid ...
Permalink![]()
![]()
![]()
Geodetic Control in Land Surveying: Active vs. Passive
Aimed at surveyors and GIS professionals, this video explains the difference between active and passive control methods in surveying, and the strengths and weaknesses of each. Passive control is the traditional method of referencing positions to physical benchmarks that have known locations. Active control references positions to one or more Continuously Operating Reference Stations (CORS). These stations use continuous contact with global navigation satellite systems (GNSS/GPS) to provide a highly accurate and updated position.
Permalink![]()
![]()
![]()
Bias Correction of NWP Model Data
The lesson "Bias Correction of NWP Model Data" first describes what affects bias in NWP models: regime continuity, timing of features that affect sensible weather, and existence (or not) of those features in the models. After discussing examples of each of these, three bias correction methods are presented: Model Output Statistics (MOS), decaying average, and a SmartInit tool developed at the Boise ID WFO called BOIVerify. Situations where each perform well and each perform poorly are discussed. Finally, after a comprehensive review question and feedback, a summary and series of points to reme ...
Permalink![]()
![]()
![]()
Polar Satellite Products for the Operational Forecaster (POES) Module 1: POES Introduction
This Web-based module is a component of the Integrated Sensor Training (IST) Professional Development Series (PDS) Professional Competency Unit #6-Satellite Data and Products. Dr. Stan Kidder of the Cooperative Institute for Research in the Atmosphere (CIRA) at Colorado State University is the principal science advisor for this module with significant assistance from Dr. Gary Hufford (NWS Alaska Region). The module provides an overview of current polar satellite products and their applications in forecasting situations and also contains a summary of instruments currently in use and a short his ...
Permalink![]()
![]()
![]()
Lectures on Radar Applications in Mesoscale Meteorology
This website provides access to the streaming presentations and PowerPoint source files for the 11 lectures delivered during the AMS Educational Forum “A Primer on Radar Analysis Techniques Used in Mesoscale Meteorology” held on 23 October 2005 in Albuquerque, NM. The presentations discuss how many advanced techniques for the analysis of meteorological radar data can be used to improve understanding of the structure, dynamics, and evolution of mesoscale circulations. The Forum was organized into four sections: 1) Microphysical Characterization of Precipitation Systems Using Dual-Polarization R ...
Permalink![]()
![]()
![]()
Rain Gauges: Are They Really Ground Truth?
It is the first streaming video Webcast released by the COMET Program. This interactive and entertaining presentation serves as a helpful reminder of the problems that can plague rain gauge performance including specifics regarding the widely used ASOS rain gauge. The material is suitable for anyone who deploys gauges or routinely uses precipitation gauge data. A version of this Webcast that can be installed on your computer for local playback is also provided.
Permalink![]()
![]()
![]()
Volcanic Ash: Impacts to Aviation, Climate, Maritime Operations, and Society
This module is the third in the four-part Volcanic Ash series. It provides information on the impacts of an explosive volcanic eruption to aviation, climate, maritime operations and society. The threats, or impacts, from an eruption vary depending on the eruption style, duration and proximity--both in distance and altitude--to the volcano. As you learned earlier, an eruption may bring multiple hazards to urban and rural areas through: Lahars (mudflows) and floods Lava-flow inundation Pyroclastic flows and surge Volcanic ash and bomb fallout Volcanic gases In this module, we'll take a closer lo ...
Permalink![]()
![]()
![]()
From mm to cm... Study of snow/liquid water ratios in Quebec
In a detailed 130 page report, Ivan Dubé of the Meteorological Service of Canada reviews the factors that contribute to snow density, and presents a new and improved algorithm based on data from Québec for diagnosing and predicting snow density. A verification of the algorithm is included, along with a few case examples. This document is in English as a .pdf file. A French version is also available: http://meted.ucar.edu/norlat/snowdensity/rapportneigeeau.pdf
Permalink![]()
![]()
![]()
Principles of Celestial Navigation
This lesson provides a basic introduction to celestial navigation for navigators, sailors, and others interested in the topic. It begins with the relationship between celestial coordinates and Earth coordinates and examines key celestial navigation parameters—geographic position, sextant altitude, observed altitude, azimuth, and computed altitude—that can be used to identify to a ship's position. A U.S. Navy navigator demonstrates the main celestial sights performed over the course of a day, including the morning three-star fix, morning Sun line, Local Apparent Noon Sun line, afternoon Sun lin ...
Permalink![]()
![]()
![]()
Understanding Heights and Vertical Datums
Aimed at scientists, engineers, modelers and other technical users of GIS/mapping applications, this lesson provides a basic understanding of different vertical datums, how they are defined, some of their strengths and weaknesses and how to choose the appropriate datum for a given application. The lesson starts with basic definitions of height and vertical datums and guidance on choosing and working with the appropriate datum for a given situation. It then provides a conceptual introduction to ellipsoidal, geopotential and tidal datums including appropriate uses, examples and pros and cons.
Permalink![]()
![]()
![]()
Climate Change and Sea Level Rise
This module looks at how increasing temperatures due to climate change have affected sea level rise and what effects scientist expect in the future, given rising greenhouse gas emissions. The various mechanisms of sea level rise are discussed, as well as the tools and research used to study this topic. The module also discusses how countries and communities are preparing for future increases in sea levels.
Permalink![]()
![]()
![]()
Caribbean Radar Cases
This module presents radar case studies taken from events in the Caribbean that highlight radar signatures of severe weather. These cases include examples of deep convection, squall lines, bow echoes, tornadoes, and heavy rain resulting in flooding. Each case study includes a discussion of the conceptual models of each type of event as a review before showing the radar signatures and allowing the learner to analyze each one.
Permalink![]()
![]()
![]()
Ensemble Applications in Winter
This lesson provides an introduction to ensemble forecast systems using an operational case study of the Blizzard of 2013 in Southern Ontario. The module uses models available to forecasters in the Meteorological Service of Canada, including Canadian and U.S. global and regional ensembles. After briefly discussing the rationale for ensemble forecasting, the module presents small lessons on probabilistic ensemble products useful in winter weather forecasting, immediately followed by forecast applications to a southern Ontario case. The learner makes forecasts for the Ontario Storm Prediction Ce ...
Permalink![]()
![]()
![]()
Distributed Hydrologic Models for Flow Forecasts - Part 2
Distributed Hydrologic Models for Flow Forecasts Part 2 is the second release in a two-part series focused on the science of distributed models and their applicability to different flow forecasting situations. Presented by Dr. Dennis Johnson, the module provides a more detailed look at the processes and mechanisms involved in distributed hydrologic models. It examines the rainfall/runoff component, snowmelt, overland flow routing, and channel response in a basin as represented in a distributed model. Calibration issues and situations in which distributed hydrologic models might be most appropr ...
Permalink![]()
![]()
![]()
Flash Flood Case Studies
This module takes the learner through seven case studies of flash flood events that occurred in the conterminous U.S. between 2003 and 2006. The cases covered include: * 30-31 August 2003: Chase & Lyon Counties, KS * 16-17 September 2004: Macon County, NC * 31 July 2006: Santa Catalina Mountains near Tucson, AZ * 25 December 2003: Fire burn area near San Bernardino, CA * 30 August 2004: Urban flash flood in Richmond, VA * 19-20 August 2003: Urban flash flood in Las Vegas, NV * 9 October 2005: Cheshire County, NH This module assists the learner in applying the concepts covered in the foundation ...
Permalink![]()
![]()
![]()
Writing TAFs for Winds and LLWS
"Writing TAFs for Winds and Low-level Wind Shear" is the third unit in the Distance Learning Aviation Course 2 (DLAC2) series on producing TAFs that meet the needs of the aviation community. In addition to providing information about tools for diagnosing wind and wind impacts, the module extends the Practically Perfect TAF (PPTAF) process to address airport-specific criteria. By understanding the criteria at airports for which they produce TAFs, forecasters will be better able to produce a Practically Perfect Site-Specific TAF (PPSST). The unit also examines how to effectively communicate logi ...
Permalink![]()
![]()
![]()
Climate Variability and Change for Water Resources Management - International Edition
Climate is changing at unprecedented rates in recorded history. A variety of lines of evidence demonstrate that climate change is likely to affect the hydrologic cycle and thus create new challenges in water management. This requires that climate change information be included in water and water-related resources planning, operations, and management. Climate Variability and Change for Water Resources Management - International Edition describes the terminology, global evidence, regional manifestations, and basic science of global climate variability and anthropogenic change, with a focus on wa ...
Permalink![]()
![]()
![]()
Basic Hydrologic Sciences Course Orientation
This brief presentation provides an overview of the COMET Basic Hydrologic Sciences course including: goal and target audiences, structure of the course and adapting it to your needs, and a brief description of course components.
Permalink![]()
![]()
![]()
Principles of Convection I: Buoyancy and CAPE
This module provides a brief overview of Buoyancy and CAPE. Topics covered include the origin of atmospheric buoyancy, estimating buoyancy using the CAPE and Lifted Index, factors that affect buoyancy including entrainment of mid-level air, water loading, convective inhibition, and the origin of convective downdrafts. This module delivers instruction with audio narration, rich graphics, and a companion print version.
Permalink![]()
![]()
![]()
Jason-2: Using Satellite Altimetry to Monitor the Ocean
Altimeters onboard satellites such as Jason-2 measure sea surface height and other characteristics of the ocean surface. These characteristics are linked to underlying processes and structures, making altimetry data useful for understanding the full depth of the global ocean. This 75-minute module explores major discoveries made possible by altimetry data in oceanography, marine meteorology, the marine geosciences, climate studies, the cryosphere, and hydrology. For example, altimeters have played a vital role in detecting and monitoring sea level rise and its relation to climate change. The m ...
Permalink![]()
![]()
![]()
Runoff Processes
The Runoff Processes module offers a thorough introduction to the runoff processes critical for flood and water supply prediction. Through the use of rich illustrations, animations, and interactions, this module explains key terminology and concepts including paths to runoff, basin and soil properties and runoff modeling. It also provides an introduction to the National Weather Service River Forecast System (NWSRFS). As a foundation topic for the Basic Hydrologic Science course, this module may be taken on its own or used as a supporting topic to provide factual scientific information to stude ...
Permalink![]()
![]()
![]()
Weather Decision Support for the National Airspace System
This three-hour lesson describes the impacts of weather on aviation operations and highlights the role of the National Weather Service (NWS) in supporting the Federal Aviation Administration's air traffic management organization. The lesson contains an Introduction (40 min), several cases (10-20 min each) focused on various weather phenomena, and a detailed case (35 min) allowing forecasters to follow the planning for and evolution of an event. The content emphasizes best practices for aviation forecasters, including identifying and communicating the threat, understanding partners' needs, and ...
Permalink![]()
![]()
![]()
An Introduction to Ensemble Streamflow Prediction
The “Introduction to Ensemble Streamflow Prediction” module provides basic information on probabilistic streamflow forecasting. In this webcast, Dr. Richard Koehler, the National Hydrologic Sciences Training Coordinator for NOAA's NWS, presents information about the types of organizations that might use probabilistic streamflow forecasts as well as foundation concepts and background for ESP methods. The module begins with a brief review of hydrologic models including deterministic, stochastic, and scenario-based approaches. It then provides an overview of time-series approaches including a sum ...
Permalink![]()
![]()
![]()
Coastal Climate Change
As climate changes, dynamic coastal regions are experiencing a wide range of impacts. Sea levels, ocean acidification, sea surface temperatures, ocean heat, and ocean circulation have all been changing in ways unseen for thousands of years. Arctic sea ice melted significantly more during summers in the last 30 years, and storms are intensifying. Coastal ecosystems stand to be damaged, and coasts will likely erode from rising sea levels, intensified storm surges, and flooding that climate change may amplify. Coastal communities will need to prepare adaptation strategies to cope, and many who li ...
Permalink![]()
![]()
![]()
Space Weather: Welcome, SEC
This video presentation welcomes the Space Weather Prediction Center, formerly known as the Space Environment Center or SEC to the National Weather Service (NWS) as an operational entity of the National Centers for Environmental Prediction (NCEP) family. Describing the ways in which space weather affects global communications and power resources, it demonstrates the importance of space weather forecasting as a part of the NWS family of services. With the inclusion of SWPC, the NWS now provides environmental understanding from the sun to the sea.
Permalink![]()
![]()
![]()
Satellite Feature Identification: Inferring Three Dimensions from Water Vapour Imagery
We think in three-dimensional space and a fourth dimension, time. Therefore, we should think about the atmosphere in similar terms. However, we are often stuck with two-dimensional maps. Water vapor imagery can help us break out of that flatland and move to more dimensions. This imagery holds so much under-utilized potential. We can actually see three-dimensional structures evolving in near-real-time. And if we have a good handle on the current three-dimensional structure, we can then use NWP to its fullest as a verification/interrogation instrument for our 3D mental model. Come see the atmosp ...
Permalink![]()
![]()
![]()
Forecasters' Overview of the Middle East
This lesson provides an introduction to the Middle East for Navy meteorologists. It focuses on the major aspects of synoptic and mesoscale weather patterns, hazards to aviation and maritime operations, geography, oceanography, and climatology. The “Geography” Unit covers major political boundaries, cities, ports, topographical features, rivers, and seismicity. The “Oceanography” Unit includes major bathymetric features, mean sea surface temperature, vertical temperature profiles, salinity and velocity, ocean currents, and tidal ranges. The “Climatology” Unit covers the seasonal climatology of ...
Permalink![]()
![]()
![]()
Extreme High Swell Events on the Moroccan Atlantic Coast
High swell events can develop far from the coast under cyclonic conditions, and take several days to travel to land. If early warnings are not issued, they can take an area by surprise and have a devastating impact. This lesson aims to improve the ability of marine forecasters to forecast extreme marine events related to high swells. It does so by providing background information on winds and waves, and presenting a process for monitoring and forecasting high swell events using a variety of data. These include ASCAT scatterometer wind data and the ECMWF Extreme Forecast Index (EFI) product, wh ...
Permalink![]()
![]()
![]()
Mei-Yu Front, Part 1: Ingredients for Heavy Precipitation and the Forecast Process in Taiwan
This lesson (available in Traditional Chinese) introduces the Mei-Yu Front characteristics and forecasting methodology used by the CWB to forecast precipitation over Taiwan. The lesson discusses the Mei-Yu Front's three-dimensional structure, lifting mechanisms, precipitation patterns and includes cases to help learners practice determining the possible area of heavy rainfall.
Permalink![]()
![]()
![]()
ASMET: Flooding in West Africa
The rainy season in Sahelian West Africa extends from June to September and is tied to the position of the intertropical front. During this period, mesoscale convective systems (MCSs) often produce significant rainfall that can lead to flooding. This module examines an extreme flooding event that occurred in Ouagadougou, Burkina Faso from 31 August to 1 September 2009. Learners assume the role of forecaster, assessing meteorological conditions to see if an MCS will develop that can lead to heavy rain and flooding. They follow a forecast process that emphasizes the use of satellite data, standa ...
Permalink![]()
![]()
![]()
Using Climatology in Forecasting Convection in West and Central Africa
This case-study lesson provides an opportunity to apply the information in the ASMET lesson “Satellite-Derived Climatology Products for Monitoring Convection Over West and Central Africa” to a case that occurred over West and Central Africa in June 2014. It demonstrates how to integrate climatology information with satellite, global instability indices (GII), and NWP data when convection is forecast to occur.
Permalink![]()
![]()
![]()
High-Frequency Radar: Supporting Critical Coastal Operations with Real-time Surface Current Data
Produced in collaboration between NOAA’s National Ocean Service (NOS) US Integrated Ocean Observing System (IOOS) Program Office and The COMET Program, this video explains how high-frequency radar (known as HF radar) is used to provide detailed information in real-time on coastal ocean surface currents. It describes the important role that HF radar products play in critical coastal operations such as hazardous spill response. Finally, it covers basic capabilities and strengths of HF radar as well as how to access coastal current data. Coastal decision-makers and managers across all levels of g ...
Permalink![]()
![]()
![]()
QPF Verification: Challenges and Tools
This module looks at the common challenges and tools with respect to verification of quantitative precipitation forecasts (QPF). Through the use of rich illustrations, animations, and interactions, this module provides an introduction to a variety of methods and approaches for assessing the quality of QPFs. The module examines the need for, and the challenges of verifying precipitation forecasts. An overview is then presented of three verification programs available to most NWS forecast offices: the Hydrometeorological Prediction Center (HPC) verification, the National Precipitation Verificati ...
Permalink![]()
![]()
![]()
Gravity for Geodesy I: Foundations
The first of a two-part series, this 40-50 minute non-narrated interactive lesson is intended to help professionals with basic science background better understand the Earth’s gravity field and what causes its variations. Of particular interest to earth/physical scientists as well as surveying engineers, this lesson covers Newton’s laws with a focus on Earth’s gravity field as it applies to geodesy. After a review of the basics of Newtonian gravitation and gravity, it explores how density, altitude, and latitude affect gravity.
Permalink![]()
![]()
![]()
Low-Level Coastal Jets
Low-level coastal jets occur along many coastlines. Winds may exceed 35 knots and lead to high waves and significant low-level vertical wind shear. Thus, low-level coastal jets present a hazard to both marine and aviation operations in the coastal zone. This core module describes the features of coastal jets and explores the conditions under which they form. Like other foundation modules in the Mesoscale Primer, this module starts with a forecast scenario and concludes with a concise summary and a final exam. By the end of this module, you should have sufficient background to diagnose and fore ...
Permalink![]()
![]()
![]()
Fire Weather Forecasting: Clear Communications, Second Edition
This lesson will introduce National Weather Service (NWS) forecasters to the communication strategies used for decision support services during wildland fire incidents. It also serves as a baseline for practices that leverage unique NWS capabilities to assist land management, firefighting, and emergency management entities in critical decision making. The learners will work through a simulation to see the effects of their communication choices on decisions made by fire personnel. The lesson replaces an earlier edition produced in 2008.
Permalink![]()
![]()
![]()
Gap Winds
This lesson provides a basic understanding of why gap winds occur, their typical structures, and how gap wind strength and extent are controlled by larger-scale, or synoptic, conditions. You will learn about a number of important gap flows in coastal regions around the world, with special attention given to comprehensively documented gap wind cases in the Strait of Juan de Fuca and the Columbia River Gorge. Basic techniques for evaluating and predicting gap flows are presented. The lesson reviews the capabilities and limitations of the current generation of mesoscale models in producing realis ...
Permalink![]()
![]()
![]()
S-290 Unit 2: Topographic Influences on Wildland Fire Behavior
S-290 Unit 2: Topographic Influences on Wildland Fire Behavior provides an overview of how topography affects fuels and the direction and spread of wildland fires. Information on features of topographic maps and estimating slope is also presented. This module is part of the Intermediate Wildland Fire Behavior Course.
Permalink![]()
![]()
![]()
The Role of the MJO in Oceanic and Atmospheric Variability
This Webcast, presented by Dr. Klaus Weickmann of NOAA/CIRES/Climate Diagnostic Center, explores the role that the Madden-Julian Oscillation (MJO) plays in global climate variability. The expert lecture is divided into five sections, which give a short overview of the phenomenon, discuss its relationship with sea surface temperatures, compares composite MJO events to individual occurrences, and touches on the ability of models to predict MJO events.
Permalink![]()
![]()
![]()
SatFC-J: The AMSR2 Microwave Imager
This short lesson describes the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the next-generation polar-orbiting satellite platforms. AMSR2’s primary mission is to improve scientists’ understanding of climate by providing estimates of precipitation, water vapor, cloud water, wind velocity, sea surface temperature, sea ice concentration, snow depth, and soil moisture. AMSR2 also advances weather forecasting through real-time imagery, value-added products, and input to numerical weather prediction. This lesson is part of the Satellite Foundational Course for JPSS (SatFC-J).
Permalink![]()
![]()
![]()
Downscaling of NWP Data
Forecasters utilize downscaled NWP products when producing forecasts of predictable features, such as terrain-related and coastal features, at finer resolution than provided by most NWP models directly. This lesson is designed to help the forecaster determine which downscaled products are most appropriate for a given forecast situation and the types of further corrections the forecaster will have to create. This module engages the learner through interactive case examples illustrating and comparing the major capabilities and limitations of some commonly-used downscaled products for 2-m tempera ...
Permalink![]()
![]()
![]()
Satellite Foundational Course for GOES-R: SatFC-G (SHyMet Full Course Access)
The Satellite Foundational Course for GOES-R (SatFC-G) is a series of nearly 40 lessons designed specifically for National Weather Service (NWS) forecasters and decision makers to prepare for the U.S.’ next-generation geostationary environmental satellites. The course is intended to help learners develop or improve their understanding of the capabilities, value, and anticipated benefits from the GOES-R suite of instruments. These instruments and imagery offer improved monitoring of meteorological, environmental, climatological, and space weather phenomena and related hazards. The course will a ...
Permalink![]()
![]()
![]()
Tropical Mesoscale Convective Systems
Mesoscale Convective Systems (MCSs) occur globally and can account for significant percentages of the annual precipitation in some locations. MCSs are responsible for flooding as well as damaging surface winds in some instances. Thus, it is important for forecasters to understand when, where, and how MCSs develop and maintain themselves. This module covers all modes of MCSs with a strong focus on the tropics and the different aspects that brings to MCS development, maintenance, and structure. It describes conceptual models of MCSs and the dynamical and physical processes that influence their e ...
Permalink![]()
![]()
![]()
Forecasting Sensible Weather from Water Vapour Imagery
Forecaster nowcasting at the synoptic scale is rapidly being replaced by the numerical weather prediction models. However, there are plenty of opportunities for you as a forecaster to improve on those forecasts with simple comparisons of water vapour hand analyses and surface hand analyses. The goal of this lesson is to improve your skills in water vapour and surface analyses to evaluate the three-dimensionality of the atmosphere and thus forecast the sensible weather better. This is the capstone for the entire Satellite Interpretation distance learning course.
Permalink![]()
![]()
![]()
Fog and Stratus Forecast Approaches
This module deals with identifying the characteristics of radiation versus advection fog events, determining which process is dominating, and applying that understanding when making ceiling and visibility forecasts. A forecast approach using a decision tree is also discussed. This decision tree outlines the basic steps involved in applying a thorough forecast approach to fog and stratus events. The module is based on live teletraining sessions offered in 2003 as part of the Distance Learning Aviation Course 1 (DLAC1) on Fog and Stratus Forecasting.
Permalink![]()
![]()
![]()
Wave Life Cycle I: Generation
This is the second in a series of training lessons on marine wind and waves. The first lesson discussed wave types and characteristics and is a good primer to this next marine training topic. Wave Life Cycle I: Generation examines how wind creates waves and the inter-relationships between wind speed, wind duration, and fetch length during this process. These three factors are important to predicting wave height and what will limit wave growth. Additional topics include fully developed seas, observation sources, and various special wind events such as coastal jets and instability mixing in the ...
Permalink![]()
![]()
![]()
Alberta Clipper Case Exercise
This case study focuses on a snow and blowing snow event in the Canadian prairies and US northern high plains on 11-13 November 2003. The key aim of this module is to step through the forecast process during an Alberta Clipper event from the perspective of a forecaster with the Meteorological Service of Canada. This involves consideration of various observations and model guidance, identification of potential areas of snowfall and blowing snow, nowcasting snowfall development and termination, and considering and providing nowcast updates throughout.
Permalink![]()
![]()
![]()
SatFC-J: The VIIRS Imager
This lesson introduces the VIIRS imager on board the Suomi NPP and JPSS satellites. The lesson briefly describes the capabilities, improvements, and benefits that VIIRS brings to operational meteorology. Numerous images are shown that demonstrate a variety of applications available in the AWIPS weather display system. This lesson is part of the Satellite Foundational Course for JPSS (SatFC-J).
Permalink![]()
![]()
![]()
Case Study: A New England Fog Event
This case examines an event that took place over New England and the Mid-Atlantic on 14 June 2001. As the culminating exercise for lessons 1 and 2 of the Distance Learning Aviation Course 1 (DLAC1) on Fog and Stratus Forecasting, its objectives are to 1) identify the preconditions favorable for fog or stratus development; 2) identify synoptic and local processes that influence the event; 3) assess onset time, duration, dissipation, and intensity; and 4) develop a TAF that reflects expected changes in ceiling and visibility. The module is a re-creation of several live teletraining sessions offe ...
Permalink![]()
![]()
![]()
Quality Management Systems: Implementation in Meteorological Services
This one-hour online learning module provides an overview of the key concepts, benefits and principles of an effective quality management system (QMS) based on the ISO 9001:2008 quality management standard. It also introduces guidelines for the successful implementation of a QMS in aviation weather service agencies. Although primarily aimed at management personnel responsible for implementing, monitoring, and updating QMS processes, it also provides a basic introduction to QMS suitable for all agency staff. The first part of this module provides a general overview, introduces key concepts and ...
Permalink![]()
![]()
![]()
Introduction to Tropical Meteorology, 2nd Edition: Chapter 6 Vertical Transport
This chapter examines vertical transport of heat, moisture, momentum, trace gases, and aerosols, including the role of tropical deep convection and turbulence. Diurnal and seasonal variations in surface fluxes and boundary layer depth are examined. The boundary layer is compared over the ocean, humid, and dry tropics, including its role in dispersing chemicals and aerosols. Boundary layer clouds are examined in terms of their connection to sub-cloud layer properties. Comparisons are made between heat and moisture transport under a variety of convective modes such as mesoscale convective system ...
Permalink![]()
![]()
![]()
African Easterly Waves
This module describes characteristics of African easterly waves including horizontal and vertical structure, evolution, speed, frequency, methods of tracking, and their downstream transformation over the Atlantic, Caribbean, and East Pacific. Mechanisms for wave formation are presented. Also explored are differences between waves that develop into tropical cyclones and those that do not. The final sections focus on extratropical interactions and variability of easterly waves.
Permalink![]()
![]()
![]()
Deformation Zone Distribution
The distribution of vorticity centres along an axis of maximum winds follows a fairly predictable pattern based on the characteristics of the flow. By diagnosing these characteristics, the meteorologist is able to quickly deduce the location and relative intensities of the associated vorticity centres as well as the relative sizes of the associated circulations. This information is summarized within the shape and orientation of the associated deformation zones. The deformation zones in turn reveal important details regarding feature motion and thermal advection and thus their diagnosis should ...
Permalink![]()
![]()
![]()
GOES-R Series Faculty Virtual Course: Advanced Baseline Imager
In this webinar recording, Tim Schmit demonstrates the improved temporal, spatial, spectral and calibration attributes of the Advanced Baseline Imager (ABI) on the GOES-R series. The main uses for each of the sixteen spectral bands will be covered, using examples from the recently launched GOES-16 ABI. Imagery and data loops for various types of atmospheric phenomena will be presented to illustrate the improved spectral capabilities and higher temporal and spatial resolution of the ABI. This is a recorded webinar presented by an instructor at his home institution. Audio variations may exist.
Permalink![]()
![]()
![]()
S-290 Unit 12: Gauging Fire Behavior and Guiding Fireline Decisions
S-290 Unit 12: Gauging Fire Behavior and Guiding Fireline Decisions examines how fire behavior is evaluated and changes are identified, and how these changes affect fireline decisions. Topics in this module build upon information covered in previous units and applies it to calculating safety zones, evaluating limitations of suppression efforts, and using tools used to predict fire behavior. The FireLine Assessment MEthod (FLAME) is introduced, and cases are provided to allow learners to apply this method to typical fireline conditions. This module is part of the Intermediate Wildland Fire Beha ...
Permalink![]()
![]()
![]()
Snowmelt Processes: International Edition
Snowmelt is an integral component of the hydrologic forecasting process in many parts of the world. Here, we examine the influences of environmental conditions on snowfall distribution, snowpack structure, snowpack-environment energy exchange, and finally, the rate and amount of snowmelt itself. The fate of snowmelt water after it reaches the ground is also explored.
Permalink![]()
![]()
![]()
Anticipating Hazardous Weather and Community Risk, 2nd Edition
Anticipating Hazardous Weather and Community Risk, 2nd Edition provides emergency managers and other decision makers with background information about weather, natural hazards, and preparedness. Additional topics include risk communication, human behavior, and effective warning partnerships, as well as a desktop exercise allowing the learner to practice the types of decisions required as hazardous situations unfold. This module offers web-based content designed to address topics covered in the multi-day Hazardous Weather and Flood Preparedness course offered by the Federal Emergency Management ...
Permalink![]()
![]()
![]()
An MCS Matrix
This module includes an interactive MCS Matrix of numerical simulations illustrating the physical processes controlling MCS evolution, as well as an archive of the entire Web module, Mesoscale Convective Systems: Squall Lines and Bow Echoes. Patterned after the CD Module A Convective Storm Matrix, the new MCS Matrix provides learners the opportunity for extensive exploration of the relationship between a MCSs environment and its structure. The matrix is composed of 21 four-dimensional numerical simulations based on the interactions of 10 different hodographs with a common thermodynamic profile ...
Permalink![]()
![]()
![]()
GOES-R: Benefits of Next-Generation Environmental Monitoring
This module is an introduction to NOAA's next generation Geostationary Operational Environmental Satellite-R (GOES-R) series, focusing on the value and anticipated benefits derived from an enhanced suite of instruments for improved monitoring of meteorological, environmental, climate, and space weather phenomena and related hazards. An extensive set of visualizations highlight GOES-R and its advanced observing capabilities for providing support in thirteen key environmental application areas including air quality and visibility, climate, cloud icing, fires, hurricanes, land cover, lightning, l ...
Permalink![]()
![]()
![]()
Winds in the Marine Boundary Layer: A Forecaster's Guide
This module is intended for experienced forecasters moving from a land-based area to a coastal or Great Lakes region where both over-land and over-water forecast areas exist. This module highlights the differences between marine boundary layer and terrestrial boundary layer winds. The experienced forecaster is relatively familiar with the boundary layer over land and the associated implications for the wind field. Using this as a base, the module compares this known quantity with the lesser-known processes that occur in the marine boundary layer. Three major topics that influence marine bounda ...
Permalink![]()
![]()
![]()
Atmospheric Dust
Atmospheric dust storms are common in many of the world's semi-arid and arid regions and can impact local, regional, and even global weather, agriculture, public health, transportation, industry, and ocean health. This module takes a multifaceted approach to studying atmospheric dust storms. The first chapter examines the impacts of dust storms, the physical processes involved in their life cycle, their source regions, and their climatology. The second chapter explores satellite products (notably dust RGBs) and dust models used for dust detection and monitoring, and presents a process for fore ...
Permalink![]()
![]()
![]()
Cold Air Damming
Cold Air Damming is part of the Mesoscale Meteorology Primer series. This module first presents a Navy forecast scenario prior to the development of a major cold air damming (CAD) event along the east slopes of the Appalachian Mountains. Then, from a conceptual standpoint, the classic CAD scenario is described in detail, both from an observational and modeling standpoint.
Permalink![]()
![]()
![]()
Met 101: Basic Weather Processes
This lesson provides an overview of basic weather processes, beginning with how the distribution of incoming solar energy helps to establish Earth’s atmospheric circulations. Learners will gain an understanding of the differences between weather and climate, and how Earth’s winds tend to have dominant patterns determined by region. An introduction to atmospheric stability, clouds, precipitation processes, and thunderstorm characteristics is also included, along with an introduction to weather impacts affecting aviation operations.
Permalink