Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
Weather and Road Management
Anticipating and dealing with weather and the hazards it creates is a real challenge for those in departments of transportation. This module gives road and highway managers a basic understanding of meteorology and weather hazards so that they can better interpret weather forecast information used to make road management decisions. The module also highlights web-based forecast products available from the National Weather Service that can help in the decision-making process.
Available online: https://www.meted.ucar.edu/training_module.php?id=489
Published by: The University Corporation for Atmospheric Research ; 2008
Anticipating and dealing with weather and the hazards it creates is a real challenge for those in departments of transportation. This module gives road and highway managers a basic understanding of meteorology and weather hazards so that they can better interpret weather forecast information used to make road management decisions. The module also highlights web-based forecast products available from the National Weather Service that can help in the decision-making process.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather ; Meteorology ; Precipitation ; Snow ; Ice ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Communicating Forecast Uncertainty
This scenario-based lesson introduces the topic of communicating forecast uncertainty to decision-makers, such as emergency managers, related industry professionals, the public, and other end-users. In a case that spans the lesson, learners begin by developing a forecast discussion using deterministic data, refine it with probabilistic ensemble data, and evaluate how well it conveys uncertainty information. Then they assume several end-user roles, assessing how well the forecast discussion addresses their needs. From there, important research findings on communicating uncertainty are discussed ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1225
Published by: The University Corporation for Atmospheric Research ; 2016
This scenario-based lesson introduces the topic of communicating forecast uncertainty to decision-makers, such as emergency managers, related industry professionals, the public, and other end-users. In a case that spans the lesson, learners begin by developing a forecast discussion using deterministic data, refine it with probabilistic ensemble data, and evaluate how well it conveys uncertainty information. Then they assume several end-user roles, assessing how well the forecast discussion addresses their needs. From there, important research findings on communicating uncertainty are discussed. In the lesson’s culminating section, learners apply the findings as several decision-makers call the forecast office, requesting specific weather information. The lesson is intended for experienced forecasters knowledgeable about mid-latitude weather regimes, although it will be of interest to the academic community as well.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Forecast uncertainty ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Understanding the Hydrologic Cycle: International Edition
This module helps students gain a basic understanding of the elements of the hydrologic cycle. The hydrologic cycle is the continuous movement and phase change of liquid water, ice, and water vapor above, on, under and through the earth's surface. This module examines the basic concepts of the hydrologic cycle including water distribution, atmospheric water, surface water, groundwater, and snowpack/snowmelt.
Available online: https://www.meted.ucar.edu/training_module.php?id=791
Published by: The University Corporation for Atmospheric Research ; 2010
This module helps students gain a basic understanding of the elements of the hydrologic cycle. The hydrologic cycle is the continuous movement and phase change of liquid water, ice, and water vapor above, on, under and through the earth's surface. This module examines the basic concepts of the hydrologic cycle including water distribution, atmospheric water, surface water, groundwater, and snowpack/snowmelt.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Hydrology ; Precipitation ; Water ; River ; Water cycle ; Runoff ; Evaporation ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
SatFC-G: Visible and Near-IR Bands
This lesson introduces you to the two visible and one of the near-infrared imager bands on the GOES R-U ABI (Advanced Baseline Imager), focusing on their spectral characteristics and how they affect what each band observes. Also included is a brief discussion of the customization of visible enhancements as an important consideration for improving the depiction of various features of interest. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Available online: https://www.meted.ucar.edu/training_module.php?id=1267
Published by: The University Corporation for Atmospheric Research ; 2016
This lesson introduces you to the two visible and one of the near-infrared imager bands on the GOES R-U ABI (Advanced Baseline Imager), focusing on their spectral characteristics and how they affect what each band observes. Also included is a brief discussion of the customization of visible enhancements as an important consideration for improving the depiction of various features of interest. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Aerosols ; Weather forecasting ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Sea Level Change: Basics
This lesson describes the physical processes, both natural and human-induced, that lead to changes in sea level. The processes described include climate induced changes in ocean heat content and volume, natural oceanic cycles, and both natural and human-induced changes in coastal land elevation. The learning is enhanced with rich graphics and periodic questions.
Available online: https://www.meted.ucar.edu/training_module.php?id=1281
Published by: The University Corporation for Atmospheric Research ; 2016
This lesson describes the physical processes, both natural and human-induced, that lead to changes in sea level. The processes described include climate induced changes in ocean heat content and volume, natural oceanic cycles, and both natural and human-induced changes in coastal land elevation. The learning is enhanced with rich graphics and periodic questions.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Groundwater ; Sea level ; Sea ice ; Marine meteorology ; Erosion ; Climate services ; Lesson/ Tutorial ; Competencies for Provision of Climate Services ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Met 101: Introduction to the Atmosphere
This lesson provides an overview of Earth’s atmosphere, its vertical structure, the fundamental forces acting on air, and how the atmosphere's composition affects the colors we see in the sky. The lesson also includes information about how Earth receives energy from the Sun as solar and infrared radiation, and the mechanisms for transferring heat around the globe. Learners will be introduced to the components of Earth’s water cycle, and also briefly explore the main types of systems used to observe the atmosphere.
Permalink![]()
![]()
![]()
HYSPLIT Applications for Emergency Decision Support, 2nd Edition
This module helps forecasters provide decision support services during hazardous materials emergencies. Topics covered include: Types of weather data inputs required for short-range dispersion models typically used by emergency managers Types of inputs required to run the web version of the HYSPLIT model with the ALOHA source term, which is now available to NWS forecasters The types and scales of events that are appropriate and inappropriate for modeling by HYSPLIT Key uncertainties that can cause misleading dispersion model forecasts The processes and limitations of CAMEO/ALOHA and HYSPLIT Ho ...
Permalink![]()
![]()
![]()
Interpreting Climate Outlooks: An Australian Example
Climate outlooks provide probability-based information about expected rainfall and temperatures at timescales of months or longer. This lesson demonstrates how monthly and seasonal outlooks issued by the Australian Bureau of Meteorology can be combined with other information for use in decision-making by persons in climate-sensitive sectors. The lesson explains the main drivers affecting Australia's climate—ENSO, Indian Ocean Dipole, Southern Annular Mode, and the subtropical ridge—and explores how the status of the climate drivers can affect the outlook maps as well as confidence in the outlo ...
Permalink![]()
![]()
![]()
Climate and Water Resources Management, Part 2: General Principles in Integrating Climate Change
This lesson describes a common approach used by the United States Bureau of Reclamation to scope a study on integrating climate change information into water resources management and planning. Learners will become familiar with the types of questions that must be addressed for considering climate change impacts when scoping their study. Examples are given for several different water resources mission areas. Note that this is the second of a two lesson series, the first one is titled, "Climate and Water Resources Management, Part 1: Climate Variability and Change."
Permalink![]()
![]()
![]()
Understanding the Role of Deterministic versus Probabilistic NWP Information
Understanding the Role of Deterministic versus Probabilistic NWP Information is part of the "NWP Training Series: Effective Use of NWP in the Forecast Process." This lesson first covers deterministic (single) NWP model forecasts and explains advantages and limitations through a case example. Then it discusses overcoming the limitations in deterministic forecasts through the use of ensemble forecast systems, and the use of deterministic and probabilistic forecasts together, through case examples.
Permalink![]()
![]()
![]()
ASMET: 2009 Drought in East Africa
The module examines the 2009 drought in the Greater Horn of Africa (GHA), focusing on conditions in Kenya. The module begins by reviewing drought conditions in the years leading up to 2009. From there, it examines the seasonal climate forecast for the beginning of 2009 and see what it portends. Satellite products are used to study rainfall performance throughout the year and its impact on the drought situation. Finally, the module describes the climate oscillations that can impact drought in the GHA and identifies patterns that were present in 2009 and contributed to its severity. By the end o ...
Permalink![]()
![]()
![]()
Limitations of High-Resolution NWP Models
This scenario-based lesson examines how the limitations of high-resolution NWP forecasts affect their analyses and forecasts of winter and severe weather, and how best to use the output in light of the limitations. The lesson is structured around a case that occurred in Texas in December 2015 when winter weather and severe weather hit Amarillo and Dallas-Ft. Worth, respectively. As users go through the case, they learn how spin-up time, errors in initial conditions, and deficiencies in the modeling of mesoscale phenomena can impact high-resolution forecasts in the NAM nest and HRRR models.
Permalink![]()
![]()
![]()
Writing TAFS for Ceilings and Visibility
"Writing TAFs for Ceilings and Visibility" is the fifth unit in the Distance Learning Aviation Course 2 (DLAC2) series on producing TAFs that meet the needs of the aviation community. In addition to providing information about tools for diagnosing low ceilings and reduced in visibility and its related impacts, the module extends the Practically Perfect TAF (PPTAF) process to address an airport's operational thresholds. By understanding the thresholds at airports for which they produce TAFs, forecasters will be better able to produce a PPTAF. The unit also examines how to communicate effectivel ...
Permalink![]()
![]()
![]()
Writing TAFS for Winter Weather
"Writing TAFs for Winter Weather" is the fourth unit in the Distance Learning Aviation Course 2 (DLAC2) series on producing TAFs that meet the needs of the aviation community. In addition to providing information about tools for diagnosing winter weather and its related impacts, the module extends the Practically Perfect TAF (PPTAF) process to address an airport’s operational thresholds. By understanding the thresholds at airports for which they produce TAFs, forecasters will be better able to produce a PPTAF. The unit also examines how to communicate effectively the logic and uncertainty usin ...
Permalink![]()
![]()
![]()
Forecasting Clear Air Turbulence for Aviation
This case-based, interactive lesson teaches a process for forecasting clear air turbulence (CAT) and applies it to a case that occurred over the U.S. Information about the synoptic patterns that generate CAT and the products and indices used to identify it are woven into the case. Some of this information is presented in optional sections intended for those who are unfamiliar with the material or want a refresher. The lesson is aimed at national and international forecasters who make aviation forecasts.
Permalink