Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
Gravity for Geodesy II: Applications
Gravity is an important part of geodesy, with implications for height measurements and many other applications. In this module, we explore the concept of equipotential surfaces and relate them to gravity. Then we discuss geodetic applications that rely on accurate gravity measurements, including leveling surveys and floodplain mapping. We introduce a special surface based on gravity, called the gravimetric geoid, and explain why we want to use it as a reference datum. We discuss how to measure Earth’s gravity and introduce you to the National Geodetic Survey’s GRAV-D project, including how and ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1318
Published by: The University Corporation for Atmospheric Research ; 2017
Gravity is an important part of geodesy, with implications for height measurements and many other applications. In this module, we explore the concept of equipotential surfaces and relate them to gravity. Then we discuss geodetic applications that rely on accurate gravity measurements, including leveling surveys and floodplain mapping. We introduce a special surface based on gravity, called the gravimetric geoid, and explain why we want to use it as a reference datum. We discuss how to measure Earth’s gravity and introduce you to the National Geodetic Survey’s GRAV-D project, including how and why the U.S. and a number of other countries plan to use a gravity-based vertical datum.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Satellite ; Lesson/ Tutorial ; Geodesy
Add tag
No review, please log in to add yours !
![]()
![]()
Interpreting and Communicating EPS Guidance: Iberian Heat Wave
This 45-minute lesson briefly introduces learners to the benefits of using probabilistic forecast information to assess the weather and communicate forecast uncertainties. Learners will explore a heat wave event in Spain and practice interpreting EPS forecast products effectively to determine various forecast parameters based on lead-time. Also, learners will decide how to best communicate the potential weather threats and impacts information to local end users.
Available online: https://www.meted.ucar.edu/training_module.php?id=1356
Published by: The University Corporation for Atmospheric Research ; 2018
This 45-minute lesson briefly introduces learners to the benefits of using probabilistic forecast information to assess the weather and communicate forecast uncertainties. Learners will explore a heat wave event in Spain and practice interpreting EPS forecast products effectively to determine various forecast parameters based on lead-time. Also, learners will decide how to best communicate the potential weather threats and impacts information to local end users.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Heat wave ; Forecast uncertainty ; Lesson/ Tutorial ; Spain ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
ASMET 7: Convective Weather and Aviation in West and Central Africa
The hazards associated with convective systems present some of the most dangerous conditions encountered by aircraft and pose many challenges to aviation operations. When convection is forecast to develop, aviation forecasters are required to issue a series of warning messages and other meteorological aeronautical products to various members of the aviation community. This lesson teaches these forecasters how to produce the products, doing so in the context of a case study in which learners assume the role of aeronautical forecaster on duty at the airport in Niamey, Niger on a night when conve ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1079
Published by: The University Corporation for Atmospheric Research ; 2013
The hazards associated with convective systems present some of the most dangerous conditions encountered by aircraft and pose many challenges to aviation operations. When convection is forecast to develop, aviation forecasters are required to issue a series of warning messages and other meteorological aeronautical products to various members of the aviation community. This lesson teaches these forecasters how to produce the products, doing so in the context of a case study in which learners assume the role of aeronautical forecaster on duty at the airport in Niamey, Niger on a night when convection develops. The lesson is one of three aviation weather case studies developed by the ASMET team to improve aviation forecasting in Africa.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Convection ; Lesson/ Tutorial ; West Africa ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Applying Diagnostic and Forecast Tools: Forecasting Fog and Low Stratus
This module discusses how to apply various observational data and remote sensing tools such as satellite, METARS, soundings, profilers, radar, and model analyses to diagnose the potential for fog and/or low stratus. Various forecast tools (such as model forecast fields, forecast soundings, and BUFKIT) used to assess fog and/or low stratus potential onset, intensity, and duration are also examined. This module is part of the Distance Learning Course 1: Forecasting Fog and Low Stratus.
Available online: https://www.meted.ucar.edu/training_module.php?id=117
Published by: The University Corporation for Atmospheric Research ; 2003
This module discusses how to apply various observational data and remote sensing tools such as satellite, METARS, soundings, profilers, radar, and model analyses to diagnose the potential for fog and/or low stratus. Various forecast tools (such as model forecast fields, forecast soundings, and BUFKIT) used to assess fog and/or low stratus potential onset, intensity, and duration are also examined. This module is part of the Distance Learning Course 1: Forecasting Fog and Low Stratus.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Observations ; Fog ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Adding Value to NWP Guidance
The purpose of this module is to train operational meteorologists at NWS WFOs and elsewhere how to maximize opportunities to add value to NWP forecasts. The training includes use of the methods and tools from earlier modules in Course 2 of Effective Use of NWP in the Forecast Process. Included in the module are two case examples for the short- and medium-range. Additionally, a WES "caselet" is available from the NWS Warning Decision Training Branch that further illustrates how to add value to NWP guidance.
Available online: https://www.meted.ucar.edu/training_module.php?id=779
Published by: The University Corporation for Atmospheric Research ; 2010
The purpose of this module is to train operational meteorologists at NWS WFOs and elsewhere how to maximize opportunities to add value to NWP forecasts. The training includes use of the methods and tools from earlier modules in Course 2 of Effective Use of NWP in the Forecast Process. Included in the module are two case examples for the short- and medium-range. Additionally, a WES "caselet" is available from the NWS Warning Decision Training Branch that further illustrates how to add value to NWP guidance.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Microwave Remote Sensing: Clouds, Precipitation, and Water Vapor
This module provides an introduction to polar-orbiting-satellite-based microwave remote sensing products that depict moisture and precipitation in the atmosphere. The module begins with definitions and descriptions of total precipitable water and cloud liquid water products, contrasting each with more familiar infrared water vapor and window channel products. This is followed by an overview of microwave precipitation estimation and a discussion of how polar-satellite products compare with those from geostationary satellites and ground-based radar. A series of case examples highlights potential ...
Permalink![]()
![]()
![]()
Introduction to the North American Ensemble Forecast System (NAEFS)
This webcast introduces the forecaster to the new multiple-forecast-center North American Ensemble Forecast System (NAEFS). Beginning with a brief review of the theory behind ensemble prediction, this presentation then introduces the elements of the NAEFS. These include the U.S. National Centers for Environmental Prediction’s Global Ensemble Forecast System (GEFS) and the Canadian Meteorological Center’s Ensemble Forecast System (CEFS). A description of each separate ensemble system is followed by a discussion of how the NAEFS improves the ensemble forecast over either the GEFS or CEFS alone. ...
Permalink![]()
![]()
![]()
Gridded Forecast Verification and Bias Correction
To become a better forecaster, it is not enough to simply know that a forecast did not verify. One must determine what happened and identify methods for improvement through forecast verification. The forecast verification process helps answer questions like: Is there a particular method that has been more effective in the past in similar circumstances? Is there guidance that is more accurate? Are there persistent biases in our forecasts? Do our forecasts perform better in certain regimes than others? In the era of gridded forecasts, grid-based verification provides more information about the s ...
Permalink![]()
![]()
![]()
Space Weather Impacts on Aviation
Space Weather Impacts on Aviation examines the effects of solar flares, coronal mass ejections, and other solar phenomena on aviation operations. The lesson builds on background science knowledge taught in the course prerequisite, Space Weather Basics, 2nd Edition. The content gives aviation forecasters and others an overview of the information and products available from NOAA's Space Weather Prediction Center and provides practice interpreting and using those products for decision support during space weather events.
Permalink![]()
![]()
![]()
Polar Satellite Products for the Operational Forecaster (POES) Module 2: Microwave Products and Applications
This Web-based module is a component of the Integrated Sensor Training (IST) Professional Development Series (PDS) Professional Competency Unit #6-Satellite Data and Products. This module provides a closer look at the capabilities, products, and applications available to operational weather forecasting with the present suite of microwave instruments onboard both NOAA and DMSP satellites. If you wish, you may launch the module from this page.
Permalink![]()
![]()
![]()
Climate and Water Resources Management, Part 1: Climate Variability and Change
Climate is changing at unprecedented rates in recorded history. A variety of lines of evidence demonstrate that climate change is likely to affect the hydrologic cycle and thus create new challenges in water management. This requires that climate change information be included in water and water-related resources planning, operations, and management. Climate and Water Resources Management, Part 1: Climate Variability and Change describes the terminology, global evidence, regional manifestations, and basic science of global climate variability and anthropogenic change, with a focus on water res ...
Permalink![]()
![]()
![]()
Satellite-Derived Climatology Products for Monitoring Convection Over West and Central Africa
A weather forecaster’s knowledge of climatology is important to the success of a forecast, especially where convection is involved. That’s particularly true over Central and West Africa where convection has a strong diurnal cycle and usually develops over particular geographic regions and during specific time intervals. The lesson describes satellite-derived cloud climatology products and several global instability indices, all of which can be integrated with other products to forecast convection. Although the lesson uses examples of climatology products from specific months, it makes the full ...
Permalink![]()
![]()
![]()
PBL in Complex Terrain - Part 2
This is part 2 of a 2-part Webcast based on a presentation by Dr. David Whiteman on August 11, 2004 in Boulder, CO. Dr. Whiteman presents conceptual and practical information regarding winds in the planetary boundary layer in complex terrain. Part 2 topics include valley wind systems, cross-valley wind systems, diurnal mountain-wind systems, and plateau-basin wind systems.
Permalink![]()
![]()
![]()
River Forecasting Case Study
This module takes the learner through the considerations for the river forecasting decisions associated with the remnants of Hurricane Ivan on 17-19 September, 2004 for the Susquehanna River system in Pennsylvania and New York. The module assists the learner with applying the concepts covered in the foundation topics of the Basic Hydrologic Sciences course. Some of the specific topics pertinent to this case are soil conditions, the impact of QPF on runoff, runoff models, runoff processes, routed flow and stage-discharge relationships. Observations of upstream conditions and comparisons to hist ...
Permalink![]()
![]()
![]()
Challenges of Forecasting in the West
During this presentation, Dr. Brad Colman (NOAA/NWS) covers both the philosophical and methodological approaches to weather forecasting in general, with a special emphasis on challenges introduced in areas of complex terrain. The insightful comments made by the presenter regarding recommended approaches to applying conceptual models, mesoscale model output, and decision trees in the forecast process are useful to anyone who predicts the weather.
Permalink![]()
![]()
![]()
How Models Produce Precipitation and Clouds - version 2
This module, part of the "NWP Training Series: Effective Use of NWP in the Forecast Process", explores how NWP models handle both grid-scale microphysical (precipitation) and convective processes through parameterizations and/or explicit methods, with an emphasis on how model treatment (and errors in the triggering) of these processes affects forecast depiction of precipitation and related forecast variables. Back in 2000, the subject matter expert for this module was Dr. Ralph Petersen of the National Centers for Environmental Prediction, Environmental Modeling Center (NCEP/EMC). Revisions to ...
Permalink![]()
![]()
![]()
Multispectral Satellite Applications: RGB Products Explained
This lesson provides an overview of meteorological and environmental RGB products, namely, how they are constructed and how to use them. The first half provides background information on the RGB development process and the rapid evolution of RGB products as newer geostationary and polar-orbiting satellite imagers incorporate additional spectral channels. The second half of the lesson, the Applications section, focuses on the formulation and uses of RGB products; providing examples, interpretation exercises, satellite specific information, and other background information for many of the common ...
Permalink![]()
![]()
![]()
Inverted Troughs Case Exercise
This exercise follows the progression of a winter weather event across the Central Plains states beginning 1200 UTC on 7 March 1999. Each forecast question is accompanied by Eta model data and includes a forecast discussion by Phil Schumacher, NWS Sioux Falls, South Dakota. This exercise compliments the Webcast, Inverted Troughs and their Associated Precipitation Regimes, based on a presentation by Phil Schumacher at the MSC Winter Weather Course, December 2002, in Boulder Colorado.
Permalink![]()
![]()
![]()
Streamflow Routing: International Edition
Streamflow routing provides a set of methods for describing and predicting the movement of water from one point to another along a river. Typically, this process involves predicting the shape of a hydrograph downstream from a particular location in a channel, reservoir, or lake. This first requires an understanding of the basic flow regimes and how water is stored and released within a channel. From there, information and calculations based on flow and channel bed characteristics are implemented in hydrologic routing methods, which are storage-based, and hydraulic routing methods, which utiliz ...
Permalink![]()
![]()
![]()
ASMET 7: Detecting Clear Air Turbulence Over Southern Africa
Turbulence is a major concern for the aviation industry. It often goes undetected in cloud-free areas, catching pilots off guard when they fly into it. Turbulence can injure passengers and crew, and cause structural damage to aircraft. This makes it critical for aviation weather forecasters to closely monitor the atmosphere for signs of turbulence and issue special warnings when it is likely to be present. This lesson helps prepare forecasters for these tasks by providing general information about turbulence and showing them how to detect it using satellite imagery, tephigrams, and NWP product ...
Permalink![]()
![]()
![]()
Precipitation Type: New Brunswick, 01-03 February 2003
This interactive case exercise covers a 24-hour forecast period that includes the challenge of precipitation type forecasting. The case exercise provides an overview of precipitation type forecasting based on model algorithms, partial thickness analysis, and the top-down method.
Permalink![]()
![]()
![]()
Fire Behavior
This module provides a comprehensive overview of the three main dimensions of the fire environment triangle: fuels, topography, and weather. Five interactive case studies illustrate the interdependent influences these three dimensions have on fire behavior. A wide range of fire behavior is also discussed in terms of the environmental factors that support or suppress fire ignition and spread. As part of the Advanced Fire Weather Forecasters Course, this module is meant to introduce forecasters to science of fire behavior.
Permalink![]()
![]()
![]()
Situational Awareness in The Fire Environment
Maintaining situational awareness is a crucial skill in every decision-support situation. Wildland fires that threaten populated areas have the potential to inflict devastating damage to communities and can also threaten the personnel working on the fire. This lesson introduces the Situational Awareness Cycle. Learners practice using it to continuously monitor and adapt their support strategies and decision-support information depending on the rapidly evolving wildfire conditions. The lesson also discusses a range of tools that can be used to build and maintain situational awareness.
Permalink![]()
![]()
![]()
Satellite Feature Identification: Atmospheric Rivers
The Satellite Feature Identification: Atmospheric Rivers lesson presents the global moisture transport phenomenon known as the Atmospheric River (AR). ARs are responsible for transporting the majority of maritime moisture from low to middle latitudes. Advanced satellite products, including Integrated Water Vapor and Total Precipitable Water, provide excellent observations of AR development and evolution. This lesson demonstrates the usefulness of these products in forecasting the impacts of ARs, especially when they are combined with numerical weather prediction products. Several AR case studi ...
Permalink![]()
![]()
![]()
The Balancing Act of Geostrophic Adjustment
This 7-page module provides a primer on geostrophic adjustment concepts. It discusses their application for understanding and forecasting real weather features, interpreting model forecasts, and recognizing the type and duration of impact that observations exert on the model forecast. The module also includes an interactive Exercises section.
Permalink![]()
![]()
![]()
Weather and Health
This course will help meteorologists and others broaden their understanding of the impacts of weather and climate on public health, including the impacts of heat waves and cold temperatures, winter storms and thunderstorms, flooding, drought, poor air quality, tornadoes, hurricanes, wildfire, UV radiation, and others. This course is directed to broadcast meteorologists, in particular, who play a critical role in the community by helping the public to protect against weather-related health threats and by promoting good health. The course also describes the public health communication system, pr ...
Permalink![]()
![]()
![]()
Training Tutorials and Datasets for GOES-R/JPSS New Generation Satellite Aerosol Products
These free training resources include video tutorials as well as case studies with accompanying data and imagery. The resources introduce the new generation of aerosol products available from the JPSS series of polar-orbiting satellites (SNPP/VIIRS) and the GOES-R series of geostationary satellites (GOES-16/ABI). Users will learn about the types of satellite aerosol products available, including aerosol optical depth/thickness (AOD/AOT) and aerosol detection (smoke/dust masks), as well as complimentary satellite products, such as fire radiative power (FRP) hotspots and visible color imagery (R ...
Permalink![]()
![]()
![]()
Introduction to the NWS National Blend of Global Models
The National Blend of Global Models was developed to utilize the best available science and provide a consistent National Weather Service forecast product across the U.S. This lesson describes the background and motivation for the National Blend and includes comparisons of Blend forecasts with current guidance. The lesson also offers a short summary of future plans and training related to the National Blend.
Permalink![]()
![]()
![]()
Runoff Processes: International Edition
The Runoff Processes module offers a thorough introduction to the runoff processes critical for flood and water supply prediction. This module explains key terminology and concepts including the following: types of runoff, paths through which water becomes runoff, basin and soil properties that influence runoff, and numerical runoff modeling. Examples of popular runoff models are also discussed.
Permalink![]()
![]()
![]()
Writing Effective TAFs
This module provides an overview of some of the applicable TAF Amendment and Conditional Group usage rules, as presented in the latest version of the National Weather Service Instruction 10-813 on TAF directives. It also presents a methodology for TAF writing and development that will lead to an effective and user-friendly product. The focus is on the ceiling and visibility aspects of the TAF. This module is part of the Distance Learning Course 1: Forecasting Fog and Low Stratus.
Permalink![]()
![]()
![]()
Recognition and Impact of Vorticity Maxima and Minima in Satellite Imagery
Vorticity maxima and minima signatures are common features of the atmosphere. They indicate areas of ascending and descending circulation and atmospheric forcing and can be used to diagnose dynamic features such as the axis of maximum winds and deformation zones. This module provides insight on the analysis of these dynamic atmospheric features using Meteosat Second Generation (MSG) satellite imagery. The module is an adaptation of Phil Chadwick's work from the series of modules in "Dynamic Feature Identification: The Satellite Palette".
Permalink![]()
![]()
![]()
Writing TAFs for Ceilings and Visibility, Africa Edition
Writing TAFs for Ceilings and Visibility, Africa Edition outlines the processes for developing an effective Terminal Aerodrome Forecast (TAF) that meets International Civil Aviation Organization (ICAO) guidelines. Geared specifically to forecasters in Africa, the lesson includes a case study for an event impacting Cape Town International Airport to provide practice applying the processes to real-life forecast situations.
Permalink![]()
![]()
![]()
Mesoscale Banded Precipitation
Precipitation frequently falls and accumulates in discrete bands with accumulations that vary markedly over short distances. This module examines several mechanisms that result in mesoscale banded precipitation, focusing primarily on processes at work in midlatitude cyclones. The module starts with a review of the Norwegian and conveyor belt cyclone models. Then several banding processes are examined in detail, including deformation/frontogenesis, the Trowal (Trough of Warm Air Aloft), frontal merger, CSI/slantwise convection, and melting/evaporation-induced circulations. The module concludes ...
Permalink![]()
![]()
![]()
Assessing NWP with Water Vapour Imagery
You've seen it happen repeatedly. Forecasters have a tough forecast ahead of them. But how are they supposed to know which model data will be the best one to help them come to a conclusion about the situation? In situations like this, the first step should always be to assess the model data against a set of current observations that should show a 1-to-1 relationship with the model output. Which variable should be plotted? On which surface? Which current observations will make the most sense to assess against? If you know the answers to some, but not all of these questions, find these answers a ...
Permalink![]()
![]()
![]()
Operational Models Encyclopedia
The availability of numerical guidance from NWP models has been an important component of operational forecasting for decades. For many, the output from this numerical guidance was produced by a mysterious “black box”. Rules for using and adjusting the guidance for operational forecasters were often subjective “Rules of Thumb” based on experience rather than based on quantitative analysis. To open up this “black box”, we produced this web-based “Operational Models Encyclopedia” linking both generic information on how NWP models work, and specifics on physical parameterizations, dynamics, and d ...
Permalink![]()
![]()
![]()
S-290 Unit 3: Fuels
S-290 Unit 3: Fuels covers the effects of fuels on fire behavior and the terminology for describing fuel characteristics, as well as fuel models used for classification. This module is part of the Intermediate Wildland Fire Behavior Course.
Permalink![]()
![]()
![]()
What's New in the National Blend of Models version 3.1
Intended for U.S. National Weather Service forecasters, this short video describes changes to the NWS National Blend of Models when it was updated to v3.1. These changes include: More global, mesoscale, and ensemble components; Increased spatial resolution of some components; New and improved weather elements for aviation, QPF, winter, fire, and marine weather forecasting; Significant wave height for offshore waters and the Great Lakes; Improved bias correction; MOS-like text products; Shortened NBM forecast projections delivered at 19 UTC. For an illustrated transcript, see What’s New in NBM ...
Permalink![]()
![]()
![]()
Introduction to Observing Oil from Helicopters and Planes
Aircrews and pilots are frequently the first to see oil spills on water. They provide critical eyes in the sky for U.S. Coast Guard (USCG) response teams and NOAA's Office of Response and Restoration. Oil spill responders use a common terminology for describing and reporting oil spills. This lesson teaches aircrews how to identify, describe, and report spills using that terminology. Misidentifying natural events as oil spills is a common, and sometimes expensive, mistake. This lesson also points out common false positives when trying to identify oil spills. While our primary audience for this ...
Permalink![]()
![]()
![]()
Typhoon QPF in Taiwan
This lesson (available in Chinese) introduces the typhoon QPF forecasting methodology used by the CWB, including the role played by the analogue method and the typhoon rainfall climatology model in Taiwan. The lesson discusses the advantages and limitations of the Ensemble Typhoon QPF model, and includes a case to help learners practice interpreting this guidance and summarizing it to Emergency Operation Centers. The lesson also highlights the need to use probabilistic forecasts instead of deterministic forecasts in order to account for the uncertainties associated with typhoon forecasting.
Permalink![]()
![]()
![]()
Forecasting Tropical Cyclone Storm Surge
This lesson introduces forecasters to the various probabilistic guidance products used by the National Hurricane Center to forecast storm surge. It provides an overview of how these probabilistic surge products are created, their purposes, and why they are preferred to deterministic-only style guidance for specific events. The lesson also provides practice in correctly interpreting probabilistic storm surge guidance at various phases of an event. Basic familiarity with probabilistic forecast guidance is required. This online lesson is part of the Tropical Cyclone Storm Surge: Forecasting and C ...
Permalink![]()
![]()
![]()
The Amazon Rain Forest and Climate Change
This module discusses global climate change that is occurring largely because of greenhouse gases emitted by human activities, and in particular the impact that tropical deforestation plays in the climate system. It also covers signs of climate change, the current thinking on future changes, and international agreements that are attempting to minimize the effects of climate change. The United Nations Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (UN-REDD Programme) is also discussed.
Permalink![]()
![]()
![]()
Introduction to Meteorological Charting
This lesson provides a brief overview of surface and upper-air data and how these data are plotted on meteorological charts. The content introduces various charting and reporting techniques, including station models, contour analyses, streamlines, and upper air maps. Examples cover both the Northern Hemisphere and Southern Hemisphere and provide learners with opportunities to practice recognizing frequently used weather symbols. Supplemental materials include three Weather Symbol Identification drills. Completing these drills may require approximately 1-1.5 hours above the length of time estim ...
Permalink![]()
![]()
![]()
MJO, Equatorial Waves, and Tropical Cyclogenesis
This case study focuses on monitoring of the MJO and equatorial waves and their role in tropical cyclogenesis. Learners will use conceptual models to understand the structure of the MJO and equatorial waves. They will identify and monitor those circulations using geostationary satellite images. 850-hPa synoptic analysis is used to track equatorial Rossby and mixed Rossby-gravity waves. Focus is on May 2002, a period when an MJO and associated equatorial waves spawned sets of twin cyclones over the Indian Ocean. This case study is similar to a synoptic meteorology laboratory exercise but is des ...
Permalink![]()
![]()
![]()
Model Fundamentals - version 2
Model Fundamentals, part of the Numerical Weather Prediction Professional Development Series and the "NWP Training Series: Effective Use of NWP in the Forecast Process", describes the components of an NWP model and how they fit into the forecast development process. It also explores why parameterization of many physical processes is necessary in NWP models. The module covers background concepts and terminology necessary for learning from the other modules in this series on NWP. Back in 2000, the subject matter expert for this module was Dr. Ralph Petersen of the National Centers for Environmen ...
Permalink![]()
![]()
![]()
Understanding Drought
Understanding Drought--This webcast provides an introduction to drought. It presents the measures and scales of drought and how drought is monitored. It also covers how drought is predicted, the impacts of drought, and provides information about drought-related resources. This content serves as a foundation to learning more about climate variability and operational climate services and prepares users for the national implementation of NIDIS. This module was last updated on Sept 28, 2009.
Permalink![]()
![]()
![]()
Mesoscale Meteorology Effects on Fire Behavior
The “Mesoscale Meteorology Effects on Fire Behavior” module reviews the development of thermally forced winds in complex terrain and explores how these winds combine with the effects of terrain to influence fire spread. Three-dimensional conceptual animations illustrate these effects through a 24-hr period, as members of the team working this theoretical fire describe different aspects of weather, fire behavior, and operational fire fighting decisions at specific times during this day. This module is part of the Advanced Fire Weather Forecasters Course.
Permalink![]()
![]()
![]()
ASMET: Satellite Precipitation Products for Hydrological Management in Southern Africa
This module introduces a variety of meteorological and hydrological products that can improve the quality of heavy rainfall forecasts and assist with hydrological management during extensive precipitation events in Southern Africa. Among the products are the satellite-based ASCAT, SMOS, and ASAR GM soil moisture products and the hydro-estimator. The products are presented within the context of a case, the flooding of South Africa's Vaal Dam region in 2009/2010.
Permalink![]()
![]()
![]()
Heavy Banded Snow
This webcast is based on a presentation by Dr. Moore MSC/COMET Winter Weather Workshop in Boulder, CO, 4 December 2002. In it, he covers the definition of the TROWAL and its role in heavy snow production in the form of bands primarily located to the northwest of the surface low. The various conveyor belts associated with mature winter cyclones are emphasized. The roles of mid-level frontogenesis and conditional symmetric instability in these systems are discussed in the context of heavy snow development.
Permalink![]()
![]()
![]()
Writing Effective TAFs in the Caribbean
The module reviews the fundamental steps for writing a Terminal Aerodrome Forecast (TAF) using guidelines and recommendations developed by the World Meteorological Organization (WMO) and the International Civil Aviation Organization (ICAO). This module outlines effective forecast methodologies to develop TAFs that represent the expected conditions that aviation customers can use to make operational decisions and minimize unnecessary costs. The module walks users through the process of analysis of satellite, surface, and observational data to create a TAF forecast for an airport in the Caribbea ...
Permalink![]()
![]()
![]()
The U.S. Naval Observatory: Mission, Products, and Services
Founded in 1830, the United States Naval Observatory (USNO) is among the oldest scientific agencies in the United States. Initially tasked with restoring, repairing, and rating nautical instruments, the USNO today provides precise time and celestial measurements required for GPS, telecommunications, navigation, and other operations. Intended as an introduction to the USNO, this module examines how the Observatory goes about its mission, and briefly describes the science behind its observations and publications.
Permalink