Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
Short-Range Ensemble Forecast Upgrade
The Short-Range Ensemble Forecast (SREF) system underwent a major upgrade in Fall 2015. The intended result of the upgrade was to improve the SREF ensemble spread and probabilistic skill, and to reduce a cool, wet bias in surface and near-surface temperatures and moisture. This 20-minute lesson addresses the changes to improve the SREF, including the increase in ensemble size, the increase in initial condition and model physics diversity, and drier land surface parameters to lessen the cool, wet bias. Each is introduced by comparing the old and new SREF forecasts for a potential winter storm f ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1214
Published by: The University Corporation for Atmospheric Research ; 2016
The Short-Range Ensemble Forecast (SREF) system underwent a major upgrade in Fall 2015. The intended result of the upgrade was to improve the SREF ensemble spread and probabilistic skill, and to reduce a cool, wet bias in surface and near-surface temperatures and moisture. This 20-minute lesson addresses the changes to improve the SREF, including the increase in ensemble size, the increase in initial condition and model physics diversity, and drier land surface parameters to lessen the cool, wet bias. Each is introduced by comparing the old and new SREF forecasts for a potential winter storm from December 2014. The results from the case study and long-term seasonal results are used to show the extent to which changes to the SREF succeeded in improving its forecasts.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Tsunami Warning Systems
Tsunami Warning Systems describes the processes involved in anticipating, detecting, and warning for a tsunami by summarizing data collection, modeling, analysis, and alert procedures used at NOAA's Tsunami Warning Centers. A simulated event and past tsunami occurrences are used to highlight warning system processes for determining the tsunami threat based on seismic and sea level data and tsunami forecast models. Message communication and local response are also addressed as final components of any warning system. The module is intended for Weather Forecast Office staff and emergency managers ...
Available online: https://www.meted.ucar.edu/training_module.php?id=786
Published by: The University Corporation for Atmospheric Research ; 2010
Tsunami Warning Systems describes the processes involved in anticipating, detecting, and warning for a tsunami by summarizing data collection, modeling, analysis, and alert procedures used at NOAA's Tsunami Warning Centers. A simulated event and past tsunami occurrences are used to highlight warning system processes for determining the tsunami threat based on seismic and sea level data and tsunami forecast models. Message communication and local response are also addressed as final components of any warning system. The module is intended for Weather Forecast Office staff and emergency managers who require a better understanding of the technical aspects of tsunami warning delivery. The module will also benefit anyone wanting to learn more about the components of tsunami warning systems.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Earthquake ; Sea level ; Wave ; Tsunami ; Marine meteorology ; Lesson/ Tutorial ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
Rip Currents: Forecasting
This is the third and final part in a training series on rip currents. The topic of forecasting daily rip current risk can be explored by operational forecasters, many of whom do not have a physical oceanography background. The hazards of rip currents and a review of the factors that contribute to rip current development are discussed. To demonstrate the process of a rip current forecast and as an example of what can locally be developed at the user’s station, the module presents a rip current worksheet that is used operationally at some forecast offices. Various parts of this worksheet requir ...
Available online: https://www.meted.ucar.edu/training_module.php?id=217
Published by: The University Corporation for Atmospheric Research ; 2006
This is the third and final part in a training series on rip currents. The topic of forecasting daily rip current risk can be explored by operational forecasters, many of whom do not have a physical oceanography background. The hazards of rip currents and a review of the factors that contribute to rip current development are discussed. To demonstrate the process of a rip current forecast and as an example of what can locally be developed at the user’s station, the module presents a rip current worksheet that is used operationally at some forecast offices. Various parts of this worksheet require the use of observed data and model output. These resources range from NOS Detailed Wave Summary reports to NOAA WAVEWATCH III model polar plots of wave spectral energy. The usage of these products in terms of rip current forecasting using the worksheet is explained in detail. In particular, the issue of “wave masking” in the 2-D model plots is illustrated. In order to practice with the products presented, the user is provided two cases (East and West Coasts). Other factors discussed include tide and lake levels as well as situational awareness. Lastly, a summary of important points from the module and experienced forecast offices is provided. Users are encouraged to examine the state of their office’s rip current program and develop a plan for improvement based on concepts and ideas presented in this module.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Tide ; Wave ; Marine meteorology ; Lesson/ Tutorial ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
Quasi Geostrophic Omega Equation
This learning object/widget is designed for upper-level undergraduates or forecaster interns who want to apply their knowledge of the Quasi-geostrophic Omega Equation to forecast situations. The interactivity helps users see how each variable interacts within the equation and shows data for different phase shifts of 500hPa and 1000hPa heights. Instructors can use this learning object with their own question sets as well to build more understanding and application into their dynamics/synoptic course.
Available online: https://www.meted.ucar.edu/training_module.php?id=1125
Published by: The University Corporation for Atmospheric Research ; 2014
This learning object/widget is designed for upper-level undergraduates or forecaster interns who want to apply their knowledge of the Quasi-geostrophic Omega Equation to forecast situations. The interactivity helps users see how each variable interacts within the equation and shows data for different phase shifts of 500hPa and 1000hPa heights. Instructors can use this learning object with their own question sets as well to build more understanding and application into their dynamics/synoptic course.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
VLab's Conceptual Models for Southern Hemisphere
Conceptual Models for Southern Hemisphere is a joint project between four southern hemispheric regions: Argentina, Australia, Brazil and South Africa. The purpose of the project is to improve warnings and awareness of weather risks through the better understanding of weather through conceptual models. The objectives of the project are to produce and make available resources about Conceptual Models. These resources are available for other training institutions within the regions as well. The number of southern hemispheric conceptual models in this catalogue will increase stepwise in the near fu ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1152
Published by: The University Corporation for Atmospheric Research ; 2014
Conceptual Models for Southern Hemisphere is a joint project between four southern hemispheric regions: Argentina, Australia, Brazil and South Africa. The purpose of the project is to improve warnings and awareness of weather risks through the better understanding of weather through conceptual models. The objectives of the project are to produce and make available resources about Conceptual Models. These resources are available for other training institutions within the regions as well. The number of southern hemispheric conceptual models in this catalogue will increase stepwise in the near future. Currently the catalogue includes eight Conceptual Model descriptions. All models contain six components: Appearance in Satellite Images, Meteorological-Physical Background, Key Parameters, Appearance in Vertical Cross Sections, Weather Events and References. This resource is made available courtesy of Virtual Laboratory for Training and Education in Satellite Meteorology (VLab) and is not produced, owned or hosted by UCAR/COMET.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Introduction to Statistics for Climatology
The effective use of climate data and products requires an understanding of what the statistical parameters mean and which parameters best summarize the data for particular climate variables. This module addresses both concerns, taking a two-pronged approach: 1) focusing on the statistical parameters (mean, median, mode, extreme values, percent frequency of occurrence and time, range, standard deviation, and data anomalies), defining what they mean and how they are calculated using climate data as examples, and 2) focusing on weather and climate variables, identifying the statistical parameter ...
Permalink![]()
![]()
![]()
Thermally-forced Circulation I: Sea Breezes
This module describes the phenomena of the sea breeze. It examines factors that lead to the formation of a sea breeze, modifying effects on sea breeze development, how mesoscale NWP models handle sea breezes, and sea breeze forecast parameters. The module places instruction in the context of a sea breeze case from Florida and compares surface and satellite observations to a model simulation using the AFWA MM5. Like other modules in the Mesoscale Meteorology Primer, this module comes with audio narration, rich graphics, and a companion print version.
Permalink![]()
![]()
![]()
Flood Frequency Analysis: International Edition
Flood frequency analysis uses historical flow records to both estimate the frequency with which floods of a certain magnitude may occur and predict the possible flood magnitude over a certain time period. This module offers a thorough introduction to appropriately constructing the necessary historical data series, calculating the flooding probabilities, and gauging the reliability of the resulting probability values. Methods for assessing flood frequency in basins with limited data are also discussed.
Permalink![]()
![]()
![]()
SatFC-G: GOES-R Impacts on Satellite Data Assimilation
This five minute lesson presents a brief overview of how GOES-R observations are expected to support and potentially enhance NWP for various analysis and forecast applications. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Permalink![]()
![]()
![]()
Introduction to Climate Models
This module explains how climate models work. Because the modeling of both weather and climate share many similarities, the content throughout this module draws frequent comparisons and highlights the differences. We explain not only how, but why climate models differ from weather models. To do so, we explore the difference between weather and climate, then show how models are built to simulate climate and generate the statistics that describe it. We conclude with a discussion of models are tuned and tested. Understanding how climate responds to changes in atmospheric composition and other fac ...
Permalink![]()
![]()
![]()
Two Right Feet? Understanding the Difference Between U.S. Survey Feet and International Survey Feet
This video explains the difference between the U.S. survey foot (sFT) and the international survey foot (iFT) and the importance of this distinction when working with map projections. It will be helpful to surveyors, planners and anyone who needs to convert map coordinates from meters to feet. This resource is hosted on COMET's YouTube Channel.
Permalink![]()
![]()
![]()
Satellite Feature Identification: Cyclogenesis
This lesson, Satellite Feature Identification: Cyclogenesis, uses water vapor satellite imagery to present a satellite perspective of basic features associated with the formation and development of extratropical cyclones. First, through an initial case study, the precursor elements leading to cyclogenesis are identified. Then three conceptual views of different ways cyclogenesis can evolve are presented along with additional examples to illustrate the concepts. Finally a series of exercises, again using real case studies, are used to emphasize the important points and provide realistic scenari ...
Permalink![]()
![]()
![]()
Fire Weather Climatology
The “Fire Weather Climatology” module provides a comprehensive look at fire regions across the United States and characteristics of typical fire seasons in each region. In addition, critical fire weather patterns are described in terms of their development, duration and impact on fire weather. Numerous case studies provide examples and opportunities to practice recognizing these critical patterns and how they can affect fire ignition and spread. This module is part of the Advanced Fire Weather Forecasters Course.
Permalink![]()
![]()
![]()
Microwave Remote Sensing Resources
This module provides background information on microwave remote sensing with polar-orbiting satellites. It reviews coverage, orbits, and data latency issues of current operational and selected research satellites and notes improvements expected in the NPP and NPOESS era. The module contrasts active vs. passive remote sensing, discusses advantages and limitations of different microwave instrument scanning strategies, and addresses viewing geometry with implications for spatial resolution and swath coverage. Finally, it offers a review of the microwave spectrum and special characteristics of mic ...
Permalink![]()
![]()
![]()
Techniques in Hydrologic Forecast Verification
This module demonstrates techniques for developing a hydrologic forecast verification effort. Although it can be taken as stand-alone training, the module on Introduction to Verification of Hydrologic Forecasts is intended a useful prerequisite. Through the use of rich illustrations, case study examples, and review questions, this module provides an example of developing a verification effort using NWS verification tools. Two case studies will be highlighted that both look at the primary question of whether QPF input to hydrologic models improves the hydrologic forecasts. Related questions of ...
Permalink