Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
Microwave Remote Sensing: Land and Ocean Surface Applications, 2nd Edition
This lesson introduces the concepts and principles basic to retrieving important land and ocean surface properties using microwave remote sensing observations from polar-orbiting satellites. Section one reviews the advantages of microwave remote sensing from polar-orbiting platforms and briefly highlights some of the unique spectral characteristics that allow for differentiation between various surface types and properties. Subsequent sections present a more in-depth look at the derivation and application of microwave products that quantify four different land and ocean surface properties and ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1100
Published by: The University Corporation for Atmospheric Research ; 2015
This lesson introduces the concepts and principles basic to retrieving important land and ocean surface properties using microwave remote sensing observations from polar-orbiting satellites. Section one reviews the advantages of microwave remote sensing from polar-orbiting platforms and briefly highlights some of the unique spectral characteristics that allow for differentiation between various surface types and properties. Subsequent sections present a more in-depth look at the derivation and application of microwave products that quantify four different land and ocean surface properties and their characteristics, including snow cover and water equivalent, sea ice, surface wetness and soil moisture, and sea surface temperature. The lesson reviews both past and current satellite missions, and also discusses follow-on missions including JPSS, GPM, and GCOM. This lesson takes about two hours to complete.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Sea ice ; Soil moisture ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Introduction to Tropical Meteorology, 2nd Edition, Chapter 8: Tropical Cyclones
Tropical cyclones are the deadliest tropical weather systems. This chapter describes their seasonal and geographic variability and controls, decadal cycles, and history of naming conventions. Tropical cyclogenesis is explored in depth and the core and balance solutions for regions of the cyclone are examined. Intensity is considered in terms of inner-core dynamics, large-scale environmental controls, limits on potential intensity, satellite interpretation techniques, and classification by wind speed. Factors that influence motion are investigated. Extratropical transition is described in terms ...
Available online: https://www.meted.ucar.edu/training_module.php?id=868
Published by: The University Corporation for Atmospheric Research ; 2010
Tropical cyclones are the deadliest tropical weather systems. This chapter describes their seasonal and geographic variability and controls, decadal cycles, and history of naming conventions. Tropical cyclogenesis is explored in depth and the core and balance solutions for regions of the cyclone are examined. Intensity is considered in terms of inner-core dynamics, large-scale environmental controls, limits on potential intensity, satellite interpretation techniques, and classification by wind speed. Factors that influence motion are investigated. Extratropical transition is described in terms of structural changes, preceding mechanisms, and impact on high latitudes. Societal impacts and mitigation are also covered.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Tropical cyclone ; Hurricane ; Tropical wave ; Storm surge ; Typhoon ; Tropical meteorology ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Sea Ice and Products and Services of the National Ice Center
This two-hour module examines sea ice, icebergs, and the products and services of the National Ice Center and the North American Ice Service. Topics include climatology and current trends in sea ice extent and thickness; the development, classification, and drift of sea ice and icebergs; fractures, leads and polynyas; and the satellite detection of sea ice using visible, infrared, and microwave sensors.
Available online: https://www.meted.ucar.edu/training_module.php?id=759
Published by: The University Corporation for Atmospheric Research ; 2011
This two-hour module examines sea ice, icebergs, and the products and services of the National Ice Center and the North American Ice Service. Topics include climatology and current trends in sea ice extent and thickness; the development, classification, and drift of sea ice and icebergs; fractures, leads and polynyas; and the satellite detection of sea ice using visible, infrared, and microwave sensors.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Sea ice ; Marine meteorology ; Lesson/ Tutorial ; Antarctica ; Arctic ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
Landfalling Fronts and Cyclones
Landfalling cyclones and their attendant fronts significantly impact the structure of mesoscale wind and precipitation fields along the west coast of North America. This module focuses on the complex interaction of the wind field with topography and the resulting effects on nearshore winds and precipitation. For example, prefrontal conditions may lead to flow blocking, development of a barrier jet, and seaward displacement of the maximum precipitation. Postfrontal conditions tend to promote windward ridging and lee troughing, which enhance along-coast flow.
Available online: https://www.meted.ucar.edu/training_module.php?id=204
Published by: The University Corporation for Atmospheric Research ; 2006
Landfalling cyclones and their attendant fronts significantly impact the structure of mesoscale wind and precipitation fields along the west coast of North America. This module focuses on the complex interaction of the wind field with topography and the resulting effects on nearshore winds and precipitation. For example, prefrontal conditions may lead to flow blocking, development of a barrier jet, and seaward displacement of the maximum precipitation. Postfrontal conditions tend to promote windward ridging and lee troughing, which enhance along-coast flow.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Precipitation ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Climate Variability and Change Lectures, July 2013
This lesson presents 13 recorded presentations from the 29 July–2 August, 2013 offering of the Climate Variability and Change Virtual Course (CVCVC). This five-day live facilitated online course provided an extensive background on a range of climate variability and change topics with an emphasis on developing communication skills for challenging climate topics. The topics covered in this course, while aimed primarily at NOAA operational climate services delivery staff will also be helpful for others who already possess a basic level of understanding of climate science. Presentations include: W ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1034
Published by: The University Corporation for Atmospheric Research ; 2014
This lesson presents 13 recorded presentations from the 29 July–2 August, 2013 offering of the Climate Variability and Change Virtual Course (CVCVC). This five-day live facilitated online course provided an extensive background on a range of climate variability and change topics with an emphasis on developing communication skills for challenging climate topics. The topics covered in this course, while aimed primarily at NOAA operational climate services delivery staff will also be helpful for others who already possess a basic level of understanding of climate science. Presentations include: Weather vs. Climate — Derek Arndt, National Climatic Data Center, NOAA Climate Variability — Matt Newman, NOAA Earth System Research Laboratory Climate Science Communication — Derek Arndt, National Climatic Data Center, NOAA The El Niño/ Southern Oscillation (ENSO) Cycle — Michelle L'Heureux, Climate Prediction Center, NOAA/National Weather Service NOAA's Atlantic Hurricane Season Outlooks — Gerry Bell, Climate Prediction Center, NOAA/National Weather Service The Madden-Julian Oscillation — Jon Gottschalk, Climate Prediction Center, NOAA/National Weather Service Drought: Science, Monitoring and Early Warning — Roger Pulwarty, National Integrated Drought Information System (NIDIS), Earth System Research Laboratory/NOAA Climate Prediction Center Outlooks — Mike Halpert, Climate Prediction Center, NOAA/National Weather Service Climate.gov: Information, Products, and Tools — David Herring, Climate Program Office, NOAA/National Weather Service Climate Communication Skills for Decision-support Audiences — Susan Buhr, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Climate Change Science — Wayne Higgins, Climate Program Office, NOAA Climate Change Impacts — Peter Backlund, University Corporation for Atmospheric Research Managing Marine and Coastal Resources in a Changing Climate — Kenric Osgood, Marine Ecosystems Division, NOAA, NMFS Please Note: There are no quizzes available on MetEd for these materials. However, NOAA/NWS users may complete a quiz for each lecture and receive credit in the Commerce Learning Center. The quizzes may be found in the Commerce Learning Center by searching for "Climate Variability and Change Lecture". A curriculum containing quizzes for all 13 lectures is available in the learning center as well.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climate change ; Tropical cyclone ; Drought ; Forecast verification ; Climate services ; Lesson/ Tutorial ; Competencies for Provision of Climate Services
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Fog: Its Processes and Impacts to Aviation and Aviation Forecasting
This module first introduces forecasters to aviation-forecast customers and their needs, and discusses how fog impacts aviation operations. The main content of the module then explains the physical processes and life cycle of radiation and advection fog, including their preconditioning environment, initiation, growth, and dissipation. The processes covered in the module include radiation (both solar and longwave), soil-atmosphere thermal interactions, turbulent mixing, the roles of condensation nuclei, and droplet settling. Each section of the module includes a set of interactive questions bas ...
Permalink![]()
![]()
![]()
Radio Wave Propagation
As a society we have become dependent on satellite communications, but satellites fail with alarming frequency. Before the advent of satellites, long distance communications were carried out with high frequency (HF) radio transmissions. This lesson examines the factors that control long-distance radio communications, with an emphasis on refraction in the ionosphere, frequency selection, and the effects of solar radiation.
Permalink![]()
![]()
![]()
Dynamic Feature Identification: The Satellite Palette
This series addresses the use of satellite imagery and focuses attention on the identification of dynamic features using high-resolution satellite imagery with NWP verification. The series will eventually include more than 20 feature presentations on topics such as comma clouds, jet streaks, deformation zones, surface features, convection, and blocking. Each feature presentation includes interactive identification exercises, analysis and diagnosis, conceptual models, and forecast implications.
Permalink![]()
![]()
![]()
Weather Ready Nation: Prepare and Be Safe!
These Weather-Ready Nation (WRN) scenarios—eight in all—take about 10 minutes each to complete. The scenarios are based on potential weather events ranging from floods to heatwaves and teach safety steps individuals should take before, during and after significant weather events. Users can choose their geographic location and appropriate age group. This learning resource was developed by Raytheon as part of the National Oceanic and Atmospheric Administration’s (NOAA) Weather-Ready Nation (WRN) Ambassador™ initiative, and incorporates feedback from NOAA and the Federal Emergency Management Agen ...
Permalink![]()
![]()
![]()
Introduction to Ensembles: Forecasting Hurricane Sandy
This module provides an introduction to ensemble forecast systems with an operational case study of Hurricane Sandy. The module concentrates on models from NCEP and FNMOC available to forecasters in the U.S. Navy, including NAEFS (North American Ensemble Forecast System), and NUOPC (National Unified Operational Prediction Capability). Probabilistic forecasts of winds and waves developed from these ensemble forecast systems are applied to a ship transit and coastal resource protection. Lessons integrated in the case study provide information on ensemble statistics, products, bias correction and ...
Permalink![]()
![]()
![]()
Met 101: Introduction to the World's Oceans
This short lesson provides an overview of the world's oceans, including information about geography, physical properties, major currents, and the effects of oceans on weather and climate. Brief information about wind waves, swell, and tides and the drivers of each of these phenomena are included along with an introduction to ocean measurements.
Permalink![]()
![]()
![]()
Monitoring the Climate System with Satellites
The international science community has identified a set of Essential Climate Variables (ECVs) that should be monitored for measuring the climate system, how it is changing, and its likely impact on future climate. Environmental satellites play an important role in this effort. They are uniquely positioned to provide broad, spatially consistent, and continuous global sampling of many of the ECVs. This module explores the benefits of monitoring the climate system with satellites. We begin by reviewing how satellites observe key atmospheric elements and features that are found in a variety of cl ...
Permalink![]()
![]()
![]()
Isentropic Analysis
This Webcast, presented by Dr. Jim Moore of St. Louis University, covers the advantages and applications of diagnosis and visualization of large-scale flow and vertical motion on surfaces of constant potential temperature. The movement of moisture along these surfaces is emphasized, as is the diagnosis of the components of vertical motion. Background mathematical concepts are presented, then illustrated with soundings, cross sections, and plan view analyses of data from multiple cases.
Permalink![]()
![]()
![]()
GOES-R Series Multilingual Training Resources
This listing of multilingual training materials for the GOES-R series includes both foundational lessons and quick guides developed by various partners at the request of the U.S. National Weather Service and NESDIS. The selections included here represent materials translated to Spanish and Portuguese. Training contributors include COMET, RAMMB/CIRA, CIMSS, and SPoRT. Translation contributors/reviewers include the Servicio Meteorológico Nacional (SMN) in Argentina and the University of São Paulo in Brazil.
Permalink![]()
![]()
![]()
Case Study: A Northern Plains Cold-Air Outbreak Event
This case study focuses on making a forecast and writing a TAF so that it best represents the meteorological situation to aviation customers. During the exercise, the student prepares a forecast for Sioux Falls, South Dakota. As part of the Distance Learning Aviation Course 1 (DLAC1) on Fog and Stratus Forecasting, the exercise applies concepts taught in the rest of the course, with special emphasis on determining the impacts on airfield flight operations and creating a TAF that describes those impacts. The module is a re-creation of several live teletraining sessions offered in 2003 as part o ...
Permalink