Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
Introduction to Tropical Meteorology, 2nd Edition, Chapter 4: Tropical Variability
This chapter presents an overview of the major cycles dominating intraseasonal and interannual variability in the tropics. Characteristic atmospheric and oceanic patterns for each oscillation are presented and methods for tracking the evolution of these cycles are described. Observations and conceptual models of equatorial waves are presented. Classical solutions for equatorial waves are outlined and the effects of moisture on the expression of these waves are discussed. Since the tropics are not an isolated region of the globe, the impacts of these cycles on higher latitudes are also explored ...
Available online: https://www.meted.ucar.edu/training_module.php?id=867
Published by: The University Corporation for Atmospheric Research ; 2010
This chapter presents an overview of the major cycles dominating intraseasonal and interannual variability in the tropics. Characteristic atmospheric and oceanic patterns for each oscillation are presented and methods for tracking the evolution of these cycles are described. Observations and conceptual models of equatorial waves are presented. Classical solutions for equatorial waves are outlined and the effects of moisture on the expression of these waves are discussed. Since the tropics are not an isolated region of the globe, the impacts of these cycles on higher latitudes are also explored. In view of the recent interest on the effects of long-term climate variability, the potential role of multidecadal oscillations in modulating these shorter cycles is discussed.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Marine meteorology ; Tropical meteorology ; La Niña ; Climate services ; Lesson/ Tutorial ; Competencies for Provision of Climate Services ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
SatFC-G: Impact of Satellite Observations on NWP
This lesson covers how satellite data inform numerical weather prediction models. From a basic overview of how satellite data is assimilated to how a new instrument's data might get into a model. This lesson is a part of the NWS Satellite Foundation GOES-R Course. More in-depth discussions and a quiz on the impacts of satellite observations on NWP can be found in the COMET lesson, How Satellite Observations Impact NWP.
Available online: https://www.meted.ucar.edu/training_module.php?id=1258
Published by: The University Corporation for Atmospheric Research ; 2016
This lesson covers how satellite data inform numerical weather prediction models. From a basic overview of how satellite data is assimilated to how a new instrument's data might get into a model. This lesson is a part of the NWS Satellite Foundation GOES-R Course. More in-depth discussions and a quiz on the impacts of satellite observations on NWP can be found in the COMET lesson, How Satellite Observations Impact NWP.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Data assimilation ; Forecast error ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Introduction to Aircraft Meteorological Data Relay (AMDAR)
Introduction to Aircraft Meteorological Data Relay (AMDAR) provides national meteorological services worldwide, airlines, and aviation organizations with information about the World Meteorological Organization (WMO) aircraft-based observing system. The audience includes meteorological service managers and providers, observational development groups, the aviation industry, and others interested in benefiting from an aircraft-based observing system in their region. The content includes interviews with several experts to provide examples of AMDAR use for both meteorological and aviation applicati ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1114
Published by: The University Corporation for Atmospheric Research ; 2014
Introduction to Aircraft Meteorological Data Relay (AMDAR) provides national meteorological services worldwide, airlines, and aviation organizations with information about the World Meteorological Organization (WMO) aircraft-based observing system. The audience includes meteorological service managers and providers, observational development groups, the aviation industry, and others interested in benefiting from an aircraft-based observing system in their region. The content includes interviews with several experts to provide examples of AMDAR use for both meteorological and aviation applications. Additional details about the systems and requirements for implementing AMDAR are also included.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather ; Meteorology ; Weather forecasting ; Numerical weather prediction ; Turbulence ; Lesson/ Tutorial ; Aviation ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Using ASCAT Wind and Other Data in Marine Forecasting
This case study lesson demonstrates the use of scatterometer wind and, to a lesser extent, altimeter significant wave height products in marine forecasting. A brief introduction to cold fronts and their impact on weather and sea state conditions sets the stage for the main part of the lesson, the case study. The case follows the passage of a cold front over the South Atlantic Ocean on 23 and 24 November 2013 when the Polarstern research vessel was transiting the area. Learners use ASCAT wind and Jason significant wave height data to help determine current conditions and evaluate GFS and WAVEWA ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1204
Published by: The University Corporation for Atmospheric Research ; 2015
This case study lesson demonstrates the use of scatterometer wind and, to a lesser extent, altimeter significant wave height products in marine forecasting. A brief introduction to cold fronts and their impact on weather and sea state conditions sets the stage for the main part of the lesson, the case study. The case follows the passage of a cold front over the South Atlantic Ocean on 23 and 24 November 2013 when the Polarstern research vessel was transiting the area. Learners use ASCAT wind and Jason significant wave height data to help determine current conditions and evaluate GFS and WAVEWATCH III analyses and forecasts. The lesson is intended for operational marine forecasters, meteorologists, and meteorological technicians at coastal stations, as well as meteorology students. Note that the lesson has been developed with funding from EUMETSAT for the ASMET project.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Marine meteorology ; Lesson/ Tutorial ; South Africa ; Marine Weather Forecasters ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
WMO Satellite User Readiness Navigator (SATURN)
The SATURN (SATellite User Readiness Navigator) developed jointly by WMO and meteorological satellite operators provides unified access to information that helps users to prepare for the new generation of meteorological satellites to be launched in the 2015-2020 timeframe. Next-generation geostationary satellites are being launched by JMA, NOAA, CMA, KMA, ROSHYDROMET and EUMETSAT, with unprecedented capabilities for severe weather monitoring, nowcasting and short range forecasting, and for a number of other application areas. However, the new systems also pose unprecedented challenges to users ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1181
Published by: The University Corporation for Atmospheric Research ; 2015
The SATURN (SATellite User Readiness Navigator) developed jointly by WMO and meteorological satellite operators provides unified access to information that helps users to prepare for the new generation of meteorological satellites to be launched in the 2015-2020 timeframe. Next-generation geostationary satellites are being launched by JMA, NOAA, CMA, KMA, ROSHYDROMET and EUMETSAT, with unprecedented capabilities for severe weather monitoring, nowcasting and short range forecasting, and for a number of other application areas. However, the new systems also pose unprecedented challenges to users, for example an order-of-magnitude increase in the amount of data and products to be generated from the on-board advanced imagers and sounders. Users also need to prepare for changes in data formats, reception techniques, data types from geostationary sounders and the capabilities of 16-channel imagers. The SATURN site features a Reference User Readiness Project, with a generic timeline to guide user readiness planning. This resource is made available courtesy of the World Meteorological Organization Space Programme and is not produced, owned or hosted by UCAR/COMET.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Training ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Role of the Skywarn Spotter
The goal of the "Role of the SKYWARN® Spotter" module is to provide baseline training for all spotters through multiple scenarios covering the procedures for spotting (including communication and storm report criteria), safety considerations for all hazards, and an overview of the national program and its history.
Permalink![]()
![]()
![]()
Using the Local Climate Analysis Tool (LCAT) for Water Resilience Decisions
This lesson offers users of climate information a demonstration of the utility of the Local Climate Analysis Tool (LCAT) for water resources applications. The training follows a NOAA Climate Resilience Toolkit case study in Tampa, Florida, and illustrates how LCAT analyses can be used to inform the steps to climate resilience outlined in the Toolkit. This text-based, interactive lesson will be accessible to anyone using LCAT for water resources decision-making, though will be most useful to those with some familiarity with drought/water resources questions and information needs. Some backgroun ...
Permalink![]()
![]()
![]()
Rapid Scan Applications and Benefits
This lesson introduces the capabilities and benefits of rapid scan imaging from geostationary meteorological satellites with a special focus on the current Meteosat Second Generation satellites. The lesson begins with an overview of current rapid scan imaging strategies and the products made from those observations. It then addresses nowcasting applications that benefit from these products with a focus on convection and its evolution. Other application areas that benefit from rapid scan observation are mentioned including the monitoring of fog and low stratus, wildfires, tropical cyclones, and ...
Permalink![]()
![]()
![]()
Deformation Zone Analysis
The quick analysis of deformation zones provides an overview of system-relative atmospheric circulations. Since deformation is a primary factor in frontogenesis and frontolysis, understanding of these system-relative circulations is crucial to the diagnosis of atmospheric processes and weather prediction. This module is part of the series: "Dynamic Feature Identification: The Satellite Palette".
Permalink![]()
![]()
![]()
Introduction to Ocean Acoustics
This module explores ocean acoustics, focusing on the propagation and detection of sound in the marine environment. Sound propagation strongly depends on refraction caused by variations in sound speed, and reflection off the seafloor and sea surface. Detection of sound subsequently depends on its propagation path, background noise from human and natural sources, and the sensors used for detection.
Permalink![]()
![]()
![]()
Ten Common NWP Misconceptions
This lesson introduces forecasters to ten of the most commonly encountered or significant misconceptions about NWP models. This list of ten misconceptions includes issues surrounding data assimilation, model resolution, physical parameterizations, and post-processing of model forecast output.
Permalink![]()
![]()
![]()
A Convective Storm Matrix: Buoyancy/Shear Dependencies
In order to help forecasters build a strategy for anticipating convective storm structures, their evolution, and the potential for severe weather, A Convective Storm Matrix provides learners the opportunity for extensive exploration of the relationship between a storm's environment and its structure. The matrix is composed of 54 four-dimensional numerical simulations based on the interactions of 16 different hodographs and 4 thermodynamic profiles. By comparing animated displays of these simulations, learners are able to discern the influences of varying buoyancy and vertical wind shear profil ...
Permalink![]()
![]()
![]()
HiresW HREF Upgrade
This 20-minute lesson presents upgraded versions of the two NWP models used as High Resolution Window (HiresW), the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) and the Non-Hydrostatic Multiscale Model on the B-grid (NMMB). Domains include the CONtinental US (CONUS), Alaska, Hawaii, Guam, and Puerto Rico. The CONUS runs of the NMMB and WRF-ARW became part of a new High Resolution Ensemble Forecast (HREF) system in 2015, the first of its kind produced at the National Centers for Environmental Prediction. To familiarize the operational forecaster with the HREF, products from ...
Permalink![]()
![]()
![]()
Foundations of Meteorological Instrumentation and Measurements
This lesson provides an introduction to the instrumentation used for meteorological measurements. Aimed at undergraduate and graduate students in meteorology and the atmospheric sciences, it examines the types of observing systems available to measure temperature, pressure, humidity, trace gases, clouds and aerosols, winds, precipitation, and radiation. Learners will explore the main components of an instrument and become acquainted with performance characteristics including types of errors. This introductory lesson provides a foundation for more detailed training focused on measurement of spe ...
Permalink![]()
![]()
![]()
Precision and Accuracy in Geodetic Surveying
This brief video focuses on the importance of both precision and accuracy in geodetic surveying and the difference between them. Produced in collaboration between NOAA’s National Geodetic Survey and The COMET Program, this video is aimed at surveying professionals, planners, policy-makers and others who use mapping products. The video emphasizes that the accuracy of survey measurements should always be verified by relating measurements to a known reference system such as the National Spatial Reference System in the United States. This resource is hosted on COMET's YouTube Channel.
Permalink![]()
![]()
![]()
Community Hurricane Preparedness, 2nd Edition
The purpose of this course is to provide emergency managers who face threats from tropical cyclones and hurricanes with basic information about: How tropical cyclones form The hazards they pose How the NWS forecasts future hurricane behavior What tools and guiding principles can help emergency managers prepare their communities The course is not intended to take the place of courses sponsored by FEMA, the National Hurricane Center, and/or state agencies. However, it will provide a good background for those who either plan to attend those courses or cannot attend them. The original module was p ...
Permalink![]()
![]()
![]()
Introduction to Climatology
This module provides an overview of climatology, the study of climate. The module begins by examining the drivers that combine to create the climate regions of the world—from those at the mesoscale (local) level to those at the synoptic-scale (continental) and global-scale levels. Examples include locally dominant winds, air masses, fronts, ocean currents, Earth’s rotation around the sun, and latitude. Each discussion of a climate driver has an ‘example/exploration’ segment, where the information is applied to several cities. The module also examines a scheme for classifying the world’s climat ...
Permalink![]()
![]()
![]()
Weather Radar Fundamentals
This 2-hour module presents the fundamental principles of Doppler weather radar operation and how to interpret common weather phenomena using radar imagery. This is accomplished via conceptual animations and many interactive radar examples in which the user can practice interpreting both radar reflectivity and radar velocity imagery. Although intended as an accelerated introduction to understanding and using basic Doppler weather radar products, the module can also serve as an excellent refresher for more experienced users.
Permalink![]()
![]()
![]()
Ensemble Forecasting Explained
This module, the latest in our series on Numerical Weather Prediction, covers the theory and use of ensemble prediction systems (EPSs). The module will help forecasters develop an understanding of the basis for EPSs, the skills to interpret ensemble products, and strategies for their use in the forecast process. It contains six sections: an Introduction that briefly presents background theory; Generation, which describes how ensemble systems are constructed; Statistical Concepts, which provides a brief refresher on knowledge required for ensemble product interpretation; Summarizing Data, which ...
Permalink![]()
![]()
![]()
Verification Methods in the NWS National Blend of Global Models
This lesson introduces learners to the methods used in verifying the various weather element forecasts included in Version 1.0 of the U.S. National Weather Service (NWS) National Blend of global Models (NBM). This Level 2 lesson is intended for forecasters and users of NWS forecast products; some prior knowledge of numerical weather prediction and statistics is useful. Learners will be introduced to the analysis of record used to verify the NBM. Learners will also explore single event, grid-to-observation, and grid-to-grid verification methods, as well as how to interpret the results using the ...
Permalink![]()
![]()
![]()
SatFC-G: Introduction to the GLM
This lesson describes the need for real-time lightning information and the capabilities of the Geostationary Lightning Mapper (GLM), which will fly on the next-generation GOES-R satellites as the first operational lightning detector in geostationary orbit. This lesson is a part of the NWS Satellite Foundation GOES-R Course. More in-depth discussions and a quiz on the lightning flash cycle and lightning applications can be found in the COMET lesson, GOES-R GLM: Introduction to the Geostationary Lightning Mapper.
Permalink![]()
![]()
![]()
GOES-R GLM: Introduction to the Geostationary Lightning Mapper
This extension of the COMET module “GOES-R: Benefits of Next Generation Environmental Monitoring” focuses on the Geostationary Lightning Mapper (GLM) instrument, the satellite's lightning mapper. The GLM will provide continuous lightning measurements over a large portion of the Western Hemisphere, mapping total lightning (intra-cloud and cloud–to–ground) flash rates and trends. GLM observations will improve local forecasts and warnings of severe weather and air quality, and provide new data for numerical weather prediction and studies of regional climate and climate change. The first part of t ...
Permalink![]()
![]()
![]()
Impact of Model Structure and Dynamics - version 2
Impact of Model Structure & Dynamics, part of the "NWP Training Series: Effective Use of NWP in the Forecast Process", explains how a model forecast, and thus interpretation of that forecast, is affected by the basic design of the model. Topics include how meteorological variables are represented in grid point and spectral models, fundamental differences between hydrostatic and nonhydrostatic models, horizontal resolution of orographic and free-atmosphere features, vertical coordinate systems and how they affect the vertical resolution of features in the model forecast, and the forecast impact ...
Permalink![]()
![]()
![]()
Operational Use of Wave Watch III
In this webcast, Dr. Hendrik Tolman (NOAA Marine Analysis Branch) discusses the operational use of NOAA WAVEWATCH III. The NOAA WAVEWATCH III is a forecast system that predicts wind-generated ocean waves. Dr. Tolman discusses what WAVEWATCH III can and cannot predict along with the model physics, numerics, and forecast products. Numerous examples illustrate the practical effects of several recent model improvements including high-resolution hurricane winds, surf zone physics, wave partitioning, and use of a multi-grid mosaic. The webcast concludes with a discussion of future improvements plann ...
Permalink![]()
![]()
![]()
National Water Model, Part 2: Early Performance
In this lesson the learner will review and interpret data regarding the early performance of the National Water Model (versions 1.0 -1.2). Verification and evaluation of the National Water Model has been occurring since it went operational in August 2016. This lesson will review some of the main issues in model performance through early 2018, including some retrospective verification extending back to 2011. You will see how model performance has been improved as a result of verification. Among the topics addressed are peak flow timing errors, model bias and correlation, the impacts of basin ca ...
Permalink