Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
NWP Essentials: Structure and Dynamics
This lesson is focused on how a model forecast and the interpretation of that forecast, is affected by the basic design of the model. Topics include how meteorological variables are represented in grid point and spectral models, fundamental differences between hydrostatic and nonhydrostatic models, horizontal resolution of orographic and free-atmosphere features, vertical coordinate systems and how they affect the vertical resolution of features in the model forecast.
Available online: https://www.meted.ucar.edu/training_module.php?id=1154
Published by: The University Corporation for Atmospheric Research ; 2015
This lesson is focused on how a model forecast and the interpretation of that forecast, is affected by the basic design of the model. Topics include how meteorological variables are represented in grid point and spectral models, fundamental differences between hydrostatic and nonhydrostatic models, horizontal resolution of orographic and free-atmosphere features, vertical coordinate systems and how they affect the vertical resolution of features in the model forecast.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
S-290 Introduction
The purpose of this unit is to introduce the online version of the Intermediate Wildland Fire Behavior, S-290 course. The unit discusses the overall course objectives, the content covered in the twelve units comprising this course, course navigation, and the contributors to this effort.
Available online: https://www.meted.ucar.edu/training_module.php?id=799
Published by: The University Corporation for Atmospheric Research ; 2010
The purpose of this unit is to introduce the online version of the Intermediate Wildland Fire Behavior, S-290 course. The unit discusses the overall course objectives, the content covered in the twelve units comprising this course, course navigation, and the contributors to this effort.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather ; Meteorology ; Education ; Fire weather ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
BoM Aviation Fog Case Exercise
This case exercise focuses on a potential fog event in Melbourne, Australia, on 6-7 April 2008. The key aim of this module is to step through the forecast process during a potential fog event from the perspective of an aviation forecaster with the Australian Bureau of Meteorology. This involves consideration of model guidance and observations, identification of potential areas of fog, forecasting and nowcasting fog formation and clearance, and considering and providing TAF updates throughout.
Available online: https://www.meted.ucar.edu/training_module.php?id=515
Published by: The University Corporation for Atmospheric Research ; 2009
This case exercise focuses on a potential fog event in Melbourne, Australia, on 6-7 April 2008. The key aim of this module is to step through the forecast process during a potential fog event from the perspective of an aviation forecaster with the Australian Bureau of Meteorology. This involves consideration of model guidance and observations, identification of potential areas of fog, forecasting and nowcasting fog formation and clearance, and considering and providing TAF updates throughout.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Fog ; Lesson/ Tutorial ; Aviation
Add tag
No review, please log in to add yours !
![]()
![]()
Marine Weather Services Incident Response and Decision Support
Marine Weather Services Incident Response and Decision Support provides guidance for forecasters tasked with supporting oil or chemical spills and other marine-focused incidents. The lesson follows an example spill event to help demonstrate marine forecasters' responsibilities for coordinating with emergency managers, other NOAA line offices, and governmental agencies and outlines best practices related to effective communication.
Available online: https://www.meted.ucar.edu/training_module.php?id=1117
Published by: The University Corporation for Atmospheric Research ; 2015
Marine Weather Services Incident Response and Decision Support provides guidance for forecasters tasked with supporting oil or chemical spills and other marine-focused incidents. The lesson follows an example spill event to help demonstrate marine forecasters' responsibilities for coordinating with emergency managers, other NOAA line offices, and governmental agencies and outlines best practices related to effective communication.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather ; Marine meteorology ; Oil ; Lesson/ Tutorial ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
Enroute Icing
Aircraft icing has resulted in numerous accidents, some fatal. The problem is due, in part, to a lack of awareness on the part of aviation forecasters (and others) that icing is imminent. The lesson addresses this issue by presenting a process for forecasting enroute icing for aviation and applying it to a case over the Continental U.S. The process involves gaining situational awareness of potential icing areas and making a first forecast of their locations and flight levels; comparing the first forecast to NWP forecasts; and adjusting as needed. To reach a wide audience and stay current, the ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1131
Published by: The University Corporation for Atmospheric Research ; 2015
Aircraft icing has resulted in numerous accidents, some fatal. The problem is due, in part, to a lack of awareness on the part of aviation forecasters (and others) that icing is imminent. The lesson addresses this issue by presenting a process for forecasting enroute icing for aviation and applying it to a case over the Continental U.S. The process involves gaining situational awareness of potential icing areas and making a first forecast of their locations and flight levels; comparing the first forecast to NWP forecasts; and adjusting as needed. To reach a wide audience and stay current, the process goes up to the point of issuing products and warnings. The lesson is aimed at aviation forecasters in the United States National Weather Service’s aviation facilities although international aviation forecasters should benefit from it as well.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Radiosonde ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
EUMeTrain's Synoptic Textbook
This 190-page text, which is based on a series of university lectures, provides comprehensive information on synoptic meteorology. There's a general introduction to synoptics followed by chapters on tropospheric circulation, air masses, boundary layer and weather, wind fields, jet streams, vertical motions, high and low pressure, convective systems, numerical parameters in vertical cross sections, mid-latitude cyclones, the tropopause, and fronts. A number of the examples in the textbook are from Northern Europe. This resource is made available courtesy of EUMeTrain and is not produced, owned ...
Permalink![]()
![]()
![]()
Dam Failure Concepts and Modeling
This lesson provides an in-depth case study to illustrate principles of dam failure modeling and examines some of the critical data inputs and outputs. Output is provided from the U.S. Army Corps of Engineers HEC-RAS model for simulated failures of a large dam. Several simulations are presented that show the impact from varying the size of the breach and the time it takes the breach to fully develop. The lesson also summarizes several infamous large dam failures from around the world and the impacts from other factors are such as reservoir shape and size, the age of the dam, and the material u ...
Permalink![]()
![]()
![]()
Introduction to Ocean Currents
This module discusses the origin of ocean currents in both the open ocean and in coastal areas. The module focuses on the driving mechanisms for currents, along with influences that modify existing currents. Driving mechanisms include wind, horizontal density differences, and tides, while modifying effects include friction, bathymetry, and the Ekman spiral. The module concludes with a demonstration of data products and a brief overview of forecast considerations.
Permalink![]()
![]()
![]()
Determining the Onset and Risk of Tropical Cyclone Winds
This lesson introduces forecasters to the probabilistic guidance products used by the National Hurricane Center to assess tropical cyclone wind threats. It provides an overview of how these probabilistic wind speed products are created, their purposes, and how to interpret them. The lesson also provides practice in determining the total risk and timing for location-specific peak wind events. This online lesson is part of the Tropical Cyclone Storm Winds: Forecasting and Communication course.
Permalink![]()
![]()
![]()
Blowing Snow: Baker Lake, Nunavut, Canada 04-10 February 2003
This case exercise takes an in-depth look at a blowing snow event in the northern mainland of Canada. The case addresses specific low-level wind and snow conditions. Model data, satellite imagery, and observations are provided for assessing the potential for blowing snow and blizzard conditions as the event unfolds.
Permalink![]()
![]()
![]()
Volcanic Ash: Observation Tools and Dispersion Models
This module is the fourth and final entry in the Volcanic Ash series. It covers the tools and techniques used for identifying and forecasting the transport of volcanic ash. Satellite and radar imagery are combined with observations and numerical model output to first identify the presence of volcanic ash and then to help forecast the transport of ash at various levels of the atmosphere.
Permalink![]()
![]()
![]()
Creating a Local Climate Product Using Composite Analysis
This Webcast features Heather Hauser of NOAA/ERH/SSD describing the utility of and introducing the methodology for conducting composite analysis as part of the NWS Climate Services program. This 30-minute presentation is intended to introduce climate focal points to the composite analysis process and will be a useful prerequisite to attending the Operational Climate Services residence courses, where the topic will be explored further. Composite analysis is the foundation of a forthcoming local climate-related product, the "3 Month Outlook of Local El Nino/La Nina Impacts."
Permalink![]()
![]()
![]()
Conceptual Models of Tropical Waves
Tropical waves are prolific rainfall producers that sometimes form tropical cyclones. Conceptual models of tropical waves are used to help learners understand the dynamical characteristics and evolution of tropical waves. Users will learn about the vertical and horizontal structure of tropical waves and the typical weather changes that accompany the passage of a tropical wave. Four different methods of tracking tropical waves are also provided. The Webcast is presented by Mr. Horace Burton and Mr. Selvin Burton of the Caribbean Institute for Meteorology and Hydrology under the auspices of the ...
Permalink![]()
![]()
![]()
Remote Sensing of Ocean Wind Speed and Direction: An Introduction to Scatterometry
This Webcast features Dr. Michael Freilich (Oregon State University, principal investigator on the QuikSCAT project for NSF) introducing and discussing the fundamentals of scatterometry and how they apply to the SeaWinds instrument on QuikSCAT. Dr. Freilich also describes how the model function is used to derive wind speed and direction from multiple collocated measurements.
Permalink![]()
![]()
![]()
S-290 Unit 6: Atmospheric Stability
S-290 Unit 6: Atmospheric Stability introduces the processes related to stable and unstable atmospheric conditions and explains their impact on fire behavior. This Unit provides detailed information about how fire behavior is affected by stable and unstable atmospheric phenomena such as inversions and thunderstorms. The Unit also explains cloud formation and describes the usage of clouds and other visual indicators to recognize stable and unstable atmospheric conditions. The module is part of the Intermediate Wildland Fire Behavior Course "http://www.meted.ucar.edu/dl_courses/S290".
Permalink