Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
Gap Winds
This lesson provides a basic understanding of why gap winds occur, their typical structures, and how gap wind strength and extent are controlled by larger-scale, or synoptic, conditions. You will learn about a number of important gap flows in coastal regions around the world, with special attention given to comprehensively documented gap wind cases in the Strait of Juan de Fuca and the Columbia River Gorge. Basic techniques for evaluating and predicting gap flows are presented. The lesson reviews the capabilities and limitations of the current generation of mesoscale models in producing realis ...
Available online: https://www.meted.ucar.edu/training_module.php?id=111
Published by: The University Corporation for Atmospheric Research ; 2003
This lesson provides a basic understanding of why gap winds occur, their typical structures, and how gap wind strength and extent are controlled by larger-scale, or synoptic, conditions. You will learn about a number of important gap flows in coastal regions around the world, with special attention given to comprehensively documented gap wind cases in the Strait of Juan de Fuca and the Columbia River Gorge. Basic techniques for evaluating and predicting gap flows are presented. The lesson reviews the capabilities and limitations of the current generation of mesoscale models in producing realistic gap winds. By the end of this lesson, you should have sufficient background to diagnose and forecast gap flows around the world, and to use this knowledge to understand their implications for operational decisions. Other features in this lesson include a concise summary for quick reference and a final exam to test your knowledge. Like other lesson in the Mesoscale Meteorology Primer, this lesson comes with audio narration, rich graphics, and a companion print version.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
S-290 Unit 2: Topographic Influences on Wildland Fire Behavior
S-290 Unit 2: Topographic Influences on Wildland Fire Behavior provides an overview of how topography affects fuels and the direction and spread of wildland fires. Information on features of topographic maps and estimating slope is also presented. This module is part of the Intermediate Wildland Fire Behavior Course.
Available online: https://www.meted.ucar.edu/training_module.php?id=533
Published by: The University Corporation for Atmospheric Research ; 2009
S-290 Unit 2: Topographic Influences on Wildland Fire Behavior provides an overview of how topography affects fuels and the direction and spread of wildland fires. Information on features of topographic maps and estimating slope is also presented. This module is part of the Intermediate Wildland Fire Behavior Course.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Fire weather ; Lesson/ Tutorial ; Map
Add tag
No review, please log in to add yours !
![]()
![]()
The Role of the MJO in Oceanic and Atmospheric Variability
This Webcast, presented by Dr. Klaus Weickmann of NOAA/CIRES/Climate Diagnostic Center, explores the role that the Madden-Julian Oscillation (MJO) plays in global climate variability. The expert lecture is divided into five sections, which give a short overview of the phenomenon, discuss its relationship with sea surface temperatures, compares composite MJO events to individual occurrences, and touches on the ability of models to predict MJO events.
Available online: https://www.meted.ucar.edu/training_module.php?id=12
Published by: The University Corporation for Atmospheric Research ; 2002
This Webcast, presented by Dr. Klaus Weickmann of NOAA/CIRES/Climate Diagnostic Center, explores the role that the Madden-Julian Oscillation (MJO) plays in global climate variability. The expert lecture is divided into five sections, which give a short overview of the phenomenon, discuss its relationship with sea surface temperatures, compares composite MJO events to individual occurrences, and touches on the ability of models to predict MJO events.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climate ; Climate services ; Lesson/ Tutorial ; Competencies for Provision of Climate Services
Add tag
No review, please log in to add yours !
![]()
![]()
SatFC-J: The AMSR2 Microwave Imager
This short lesson describes the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the next-generation polar-orbiting satellite platforms. AMSR2’s primary mission is to improve scientists’ understanding of climate by providing estimates of precipitation, water vapor, cloud water, wind velocity, sea surface temperature, sea ice concentration, snow depth, and soil moisture. AMSR2 also advances weather forecasting through real-time imagery, value-added products, and input to numerical weather prediction. This lesson is part of the Satellite Foundational Course for JPSS (SatFC-J).
Available online: https://www.meted.ucar.edu/training_module.php?id=1303
Published by: The University Corporation for Atmospheric Research ; 2018
This short lesson describes the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the next-generation polar-orbiting satellite platforms. AMSR2’s primary mission is to improve scientists’ understanding of climate by providing estimates of precipitation, water vapor, cloud water, wind velocity, sea surface temperature, sea ice concentration, snow depth, and soil moisture. AMSR2 also advances weather forecasting through real-time imagery, value-added products, and input to numerical weather prediction. This lesson is part of the Satellite Foundational Course for JPSS (SatFC-J).
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climate ; Weather forecasting ; Sea ice ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Downscaling of NWP Data
Forecasters utilize downscaled NWP products when producing forecasts of predictable features, such as terrain-related and coastal features, at finer resolution than provided by most NWP models directly. This lesson is designed to help the forecaster determine which downscaled products are most appropriate for a given forecast situation and the types of further corrections the forecaster will have to create. This module engages the learner through interactive case examples illustrating and comparing the major capabilities and limitations of some commonly-used downscaled products for 2-m tempera ...
Available online: https://www.meted.ucar.edu/training_module.php?id=794
Published by: The University Corporation for Atmospheric Research ; 2010
Forecasters utilize downscaled NWP products when producing forecasts of predictable features, such as terrain-related and coastal features, at finer resolution than provided by most NWP models directly. This lesson is designed to help the forecaster determine which downscaled products are most appropriate for a given forecast situation and the types of further corrections the forecaster will have to create. This module engages the learner through interactive case examples illustrating and comparing the major capabilities and limitations of some commonly-used downscaled products for 2-m temperatures and 10-m winds. Products covered include Gridded MOS, PRISM, NCEP downscaling for NAM and for NAEFS, downscaling in the AWIPS Graphical Forecast Editor, and the use of high-resolution models to perform downscaling.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Satellite Foundational Course for GOES-R: SatFC-G (SHyMet Full Course Access)
The Satellite Foundational Course for GOES-R (SatFC-G) is a series of nearly 40 lessons designed specifically for National Weather Service (NWS) forecasters and decision makers to prepare for the U.S.’ next-generation geostationary environmental satellites. The course is intended to help learners develop or improve their understanding of the capabilities, value, and anticipated benefits from the GOES-R suite of instruments. These instruments and imagery offer improved monitoring of meteorological, environmental, climatological, and space weather phenomena and related hazards. The course will a ...
Permalink![]()
![]()
![]()
Tropical Mesoscale Convective Systems
Mesoscale Convective Systems (MCSs) occur globally and can account for significant percentages of the annual precipitation in some locations. MCSs are responsible for flooding as well as damaging surface winds in some instances. Thus, it is important for forecasters to understand when, where, and how MCSs develop and maintain themselves. This module covers all modes of MCSs with a strong focus on the tropics and the different aspects that brings to MCS development, maintenance, and structure. It describes conceptual models of MCSs and the dynamical and physical processes that influence their e ...
Permalink![]()
![]()
![]()
Forecasting Sensible Weather from Water Vapour Imagery
Forecaster nowcasting at the synoptic scale is rapidly being replaced by the numerical weather prediction models. However, there are plenty of opportunities for you as a forecaster to improve on those forecasts with simple comparisons of water vapour hand analyses and surface hand analyses. The goal of this lesson is to improve your skills in water vapour and surface analyses to evaluate the three-dimensionality of the atmosphere and thus forecast the sensible weather better. This is the capstone for the entire Satellite Interpretation distance learning course.
Permalink![]()
![]()
![]()
Fog and Stratus Forecast Approaches
This module deals with identifying the characteristics of radiation versus advection fog events, determining which process is dominating, and applying that understanding when making ceiling and visibility forecasts. A forecast approach using a decision tree is also discussed. This decision tree outlines the basic steps involved in applying a thorough forecast approach to fog and stratus events. The module is based on live teletraining sessions offered in 2003 as part of the Distance Learning Aviation Course 1 (DLAC1) on Fog and Stratus Forecasting.
Permalink![]()
![]()
![]()
Wave Life Cycle I: Generation
This is the second in a series of training lessons on marine wind and waves. The first lesson discussed wave types and characteristics and is a good primer to this next marine training topic. Wave Life Cycle I: Generation examines how wind creates waves and the inter-relationships between wind speed, wind duration, and fetch length during this process. These three factors are important to predicting wave height and what will limit wave growth. Additional topics include fully developed seas, observation sources, and various special wind events such as coastal jets and instability mixing in the ...
Permalink![]()
![]()
![]()
Alberta Clipper Case Exercise
This case study focuses on a snow and blowing snow event in the Canadian prairies and US northern high plains on 11-13 November 2003. The key aim of this module is to step through the forecast process during an Alberta Clipper event from the perspective of a forecaster with the Meteorological Service of Canada. This involves consideration of various observations and model guidance, identification of potential areas of snowfall and blowing snow, nowcasting snowfall development and termination, and considering and providing nowcast updates throughout.
Permalink![]()
![]()
![]()
SatFC-J: The VIIRS Imager
This lesson introduces the VIIRS imager on board the Suomi NPP and JPSS satellites. The lesson briefly describes the capabilities, improvements, and benefits that VIIRS brings to operational meteorology. Numerous images are shown that demonstrate a variety of applications available in the AWIPS weather display system. This lesson is part of the Satellite Foundational Course for JPSS (SatFC-J).
Permalink![]()
![]()
![]()
Case Study: A New England Fog Event
This case examines an event that took place over New England and the Mid-Atlantic on 14 June 2001. As the culminating exercise for lessons 1 and 2 of the Distance Learning Aviation Course 1 (DLAC1) on Fog and Stratus Forecasting, its objectives are to 1) identify the preconditions favorable for fog or stratus development; 2) identify synoptic and local processes that influence the event; 3) assess onset time, duration, dissipation, and intensity; and 4) develop a TAF that reflects expected changes in ceiling and visibility. The module is a re-creation of several live teletraining sessions offe ...
Permalink![]()
![]()
![]()
Quality Management Systems: Implementation in Meteorological Services
This one-hour online learning module provides an overview of the key concepts, benefits and principles of an effective quality management system (QMS) based on the ISO 9001:2008 quality management standard. It also introduces guidelines for the successful implementation of a QMS in aviation weather service agencies. Although primarily aimed at management personnel responsible for implementing, monitoring, and updating QMS processes, it also provides a basic introduction to QMS suitable for all agency staff. The first part of this module provides a general overview, introduces key concepts and ...
Permalink![]()
![]()
![]()
Introduction to Tropical Meteorology, 2nd Edition: Chapter 6 Vertical Transport
This chapter examines vertical transport of heat, moisture, momentum, trace gases, and aerosols, including the role of tropical deep convection and turbulence. Diurnal and seasonal variations in surface fluxes and boundary layer depth are examined. The boundary layer is compared over the ocean, humid, and dry tropics, including its role in dispersing chemicals and aerosols. Boundary layer clouds are examined in terms of their connection to sub-cloud layer properties. Comparisons are made between heat and moisture transport under a variety of convective modes such as mesoscale convective system ...
Permalink![]()
![]()
![]()
African Easterly Waves
This module describes characteristics of African easterly waves including horizontal and vertical structure, evolution, speed, frequency, methods of tracking, and their downstream transformation over the Atlantic, Caribbean, and East Pacific. Mechanisms for wave formation are presented. Also explored are differences between waves that develop into tropical cyclones and those that do not. The final sections focus on extratropical interactions and variability of easterly waves.
Permalink![]()
![]()
![]()
Deformation Zone Distribution
The distribution of vorticity centres along an axis of maximum winds follows a fairly predictable pattern based on the characteristics of the flow. By diagnosing these characteristics, the meteorologist is able to quickly deduce the location and relative intensities of the associated vorticity centres as well as the relative sizes of the associated circulations. This information is summarized within the shape and orientation of the associated deformation zones. The deformation zones in turn reveal important details regarding feature motion and thermal advection and thus their diagnosis should ...
Permalink![]()
![]()
![]()
GOES-R Series Faculty Virtual Course: Advanced Baseline Imager
In this webinar recording, Tim Schmit demonstrates the improved temporal, spatial, spectral and calibration attributes of the Advanced Baseline Imager (ABI) on the GOES-R series. The main uses for each of the sixteen spectral bands will be covered, using examples from the recently launched GOES-16 ABI. Imagery and data loops for various types of atmospheric phenomena will be presented to illustrate the improved spectral capabilities and higher temporal and spatial resolution of the ABI. This is a recorded webinar presented by an instructor at his home institution. Audio variations may exist.
Permalink![]()
![]()
![]()
S-290 Unit 12: Gauging Fire Behavior and Guiding Fireline Decisions
S-290 Unit 12: Gauging Fire Behavior and Guiding Fireline Decisions examines how fire behavior is evaluated and changes are identified, and how these changes affect fireline decisions. Topics in this module build upon information covered in previous units and applies it to calculating safety zones, evaluating limitations of suppression efforts, and using tools used to predict fire behavior. The FireLine Assessment MEthod (FLAME) is introduced, and cases are provided to allow learners to apply this method to typical fireline conditions. This module is part of the Intermediate Wildland Fire Beha ...
Permalink![]()
![]()
![]()
Snowmelt Processes: International Edition
Snowmelt is an integral component of the hydrologic forecasting process in many parts of the world. Here, we examine the influences of environmental conditions on snowfall distribution, snowpack structure, snowpack-environment energy exchange, and finally, the rate and amount of snowmelt itself. The fate of snowmelt water after it reaches the ground is also explored.
Permalink![]()
![]()
![]()
Anticipating Hazardous Weather and Community Risk, 2nd Edition
Anticipating Hazardous Weather and Community Risk, 2nd Edition provides emergency managers and other decision makers with background information about weather, natural hazards, and preparedness. Additional topics include risk communication, human behavior, and effective warning partnerships, as well as a desktop exercise allowing the learner to practice the types of decisions required as hazardous situations unfold. This module offers web-based content designed to address topics covered in the multi-day Hazardous Weather and Flood Preparedness course offered by the Federal Emergency Management ...
Permalink![]()
![]()
![]()
An MCS Matrix
This module includes an interactive MCS Matrix of numerical simulations illustrating the physical processes controlling MCS evolution, as well as an archive of the entire Web module, Mesoscale Convective Systems: Squall Lines and Bow Echoes. Patterned after the CD Module A Convective Storm Matrix, the new MCS Matrix provides learners the opportunity for extensive exploration of the relationship between a MCSs environment and its structure. The matrix is composed of 21 four-dimensional numerical simulations based on the interactions of 10 different hodographs with a common thermodynamic profile ...
Permalink![]()
![]()
![]()
GOES-R: Benefits of Next-Generation Environmental Monitoring
This module is an introduction to NOAA's next generation Geostationary Operational Environmental Satellite-R (GOES-R) series, focusing on the value and anticipated benefits derived from an enhanced suite of instruments for improved monitoring of meteorological, environmental, climate, and space weather phenomena and related hazards. An extensive set of visualizations highlight GOES-R and its advanced observing capabilities for providing support in thirteen key environmental application areas including air quality and visibility, climate, cloud icing, fires, hurricanes, land cover, lightning, l ...
Permalink![]()
![]()
![]()
Winds in the Marine Boundary Layer: A Forecaster's Guide
This module is intended for experienced forecasters moving from a land-based area to a coastal or Great Lakes region where both over-land and over-water forecast areas exist. This module highlights the differences between marine boundary layer and terrestrial boundary layer winds. The experienced forecaster is relatively familiar with the boundary layer over land and the associated implications for the wind field. Using this as a base, the module compares this known quantity with the lesser-known processes that occur in the marine boundary layer. Three major topics that influence marine bounda ...
Permalink![]()
![]()
![]()
Atmospheric Dust
Atmospheric dust storms are common in many of the world's semi-arid and arid regions and can impact local, regional, and even global weather, agriculture, public health, transportation, industry, and ocean health. This module takes a multifaceted approach to studying atmospheric dust storms. The first chapter examines the impacts of dust storms, the physical processes involved in their life cycle, their source regions, and their climatology. The second chapter explores satellite products (notably dust RGBs) and dust models used for dust detection and monitoring, and presents a process for fore ...
Permalink