Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
Flow Interaction with Topography
This is a foundation module in the Mesoscale Meteorology Primer series. Topics covered include an overview of factors that control whether air will go up and over a mountain or be forced around it, the role of potential and kinetic energy, the Froude number and what it tells you, and air flow blocked by topography.
Available online: https://www.meted.ucar.edu/training_module.php?id=57
Published by: The University Corporation for Atmospheric Research ; 2001
This is a foundation module in the Mesoscale Meteorology Primer series. Topics covered include an overview of factors that control whether air will go up and over a mountain or be forced around it, the role of potential and kinetic energy, the Froude number and what it tells you, and air flow blocked by topography.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Introduction to Verification of Hydrologic Forecasts
This module offers a comprehensive description of a set of common verification measures for hydrologic forecasts, both deterministic and probabilistic. Through use of rich illustrations, animations, and interactions, this module explains how these verification measures can provide valuable information to users with varying needs. In addition to providing a measure of how well a forecast matches observations, verification measures can be used to help forecasters and users learn about the strengths and weaknesses of a forecast.
Available online: https://www.meted.ucar.edu/training_module.php?id=486
Published by: The University Corporation for Atmospheric Research ; 2008
This module offers a comprehensive description of a set of common verification measures for hydrologic forecasts, both deterministic and probabilistic. Through use of rich illustrations, animations, and interactions, this module explains how these verification measures can provide valuable information to users with varying needs. In addition to providing a measure of how well a forecast matches observations, verification measures can be used to help forecasters and users learn about the strengths and weaknesses of a forecast.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Hydrology ; Climatology ; Statistics ; Forecast verification ; Forecast uncertainty ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Inverted Troughs and Their Associated Precipitation Regimes
This Webcast features Phil Schumacher, NWS Sioux Falls, South Dakota discussing the conditions that dictate the location of precipitation relative to inverted troughs. Phil presents a composite case study based on collaborative research with Dr. R. Weisman and others, as well as two examples of inverted trough events in the Central Plains. This presentation is based on his presentation at the MSC Winter Weather Course, December 2002, in Boulder, Colorado. The webcast is accompanied by a case exercise, Inverted Trough Case Exercise.
Available online: https://www.meted.ucar.edu/training_module.php?id=141
Published by: The University Corporation for Atmospheric Research ; 2004
This Webcast features Phil Schumacher, NWS Sioux Falls, South Dakota discussing the conditions that dictate the location of precipitation relative to inverted troughs. Phil presents a composite case study based on collaborative research with Dr. R. Weisman and others, as well as two examples of inverted trough events in the Central Plains. This presentation is based on his presentation at the MSC Winter Weather Course, December 2002, in Boulder, Colorado. The webcast is accompanied by a case exercise, Inverted Trough Case Exercise.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Heavy snowfall ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Geospatial Infrastructure for Coastal Communities: Informing Adaptation to Sea Level Rise
Aimed at community planners, emergency managers, and other coastal zone decision-makers this video will explain how using geospatial information already available through NOAA, combined with strategic local investments in infrastructure can provide communities with the data needed to confidently plan for future sea-level changes. This resource is hosted on COMET's YouTube Channel.
Available online: https://www.meted.ucar.edu/training_module.php?id=1200
Published by: The University Corporation for Atmospheric Research ; 2015
Aimed at community planners, emergency managers, and other coastal zone decision-makers this video will explain how using geospatial information already available through NOAA, combined with strategic local investments in infrastructure can provide communities with the data needed to confidently plan for future sea-level changes. This resource is hosted on COMET's YouTube Channel.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climate change ; Climate services ; Lesson/ Tutorial ; Mapping ; Geodesy ; Competencies for Provision of Climate Services
Add tag
No review, please log in to add yours !
![]()
![]()
Optimizing the Use of Model Data Products
Each model forecast tells a story about the weather events to unfold. As a forecaster, you employ diagnostics to understand and interpret that story, in order to modify it, blend it with other stories, and generate your own forecast. This lesson will help you sift through the abundance of model data so you can understand and interpret the model’s story. Other lessons cover evaluating the model’s story against observations and against your conceptual models of the evolving situation, blending the stories, and adjusting the forecast to add value over an objective forecast. The diagnostic approac ...
Available online: https://www.meted.ucar.edu/training_module.php?id=778
Published by: The University Corporation for Atmospheric Research ; 2011
Each model forecast tells a story about the weather events to unfold. As a forecaster, you employ diagnostics to understand and interpret that story, in order to modify it, blend it with other stories, and generate your own forecast. This lesson will help you sift through the abundance of model data so you can understand and interpret the model’s story. Other lessons cover evaluating the model’s story against observations and against your conceptual models of the evolving situation, blending the stories, and adjusting the forecast to add value over an objective forecast. The diagnostic approaches in this lesson can be used in any of the first three steps in the forecast process. Since the model’s story may provide insight into the forecast problem of the day, diagnostics may identify the key processes resulting in the model’s forecast, and your understanding of the model forecast can help you assess its plausibility. This lesson is broken into three parts. Each is self-contained. Feel free to take them separately as you have time. Part 1 addresses the different insights you can get from different ways of visualizing the model data Part 2 addresses extracting and distilling the large-scale signature from complex and noisy-looking forecast fields using quasigeostrophic diagnostics Part 3 addresses extracting model signals using non-quasigeostrophic approaches, which are more suitable than quasigeostrophic approaches for mesoscale features. The lesson has one quiz, thus it is best to attempt the quiz after you have reviewed all parts of the lesson.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Convection ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Using NWP Lightning Products in Forecasting
This lesson introduces two numerical weather prediction (NWP) lightning hazard products that forecasters can use during a convective meteorological watch and to assess lightning risk at Day 2 and beyond. The first product is the Flash Rate Density, a derived, deterministic lightning product implemented in some NCEP high-resolution NWP models. The second product, the SPC Calibrated Thunderstorm Probability, combines forecasts of measurable precipitation and favorable lightning environments determined from the Cloud Physics Thunder Parameter. Information about these products is presented in the ...
Permalink![]()
![]()
![]()
Mesoscale Convective Systems: Squall Lines and Bow Echoes
This module presents current conceptual models of several MCS types and provides explanations for the structures and behavior of MCSs based on the physical processes underlying their evolution. An understanding of the physical processes and conceptual models of MCSs will help forecasters to predict the most likely locations of severe weather within existing systems and to forecast the longevity, areal extent, and path of the system. Accompanied by conceptual animations, numerical simulations, and case studies, Mesoscale Convective Systems: Squall Lines and Bow Echoes presents strategies with w ...
Permalink![]()
![]()
![]()
Unit Hydrograph Theory: International Edition
The role of unit hydrograph theory in the flood prediction process is to provide an estimate of streamflow that results from a given amount precipitation. A unit hydrograph shows the temporal change in flow, or discharge, per excess unit of precipitation runoff. This module offers a thorough introduction to the use of unit hydrographs and the application of unit hydrograph theory in flood prediction. Key terminology and assumptions, the process of creating a unit hydrograph and application of unit hydrograph theory to forecast situations are all explored through comprehensive animations and in ...
Permalink![]()
![]()
![]()
Rip Currents: NWS Mission and Partnerships
This module discusses the basics of rip current formation and detection as well as the partnerships between the National Weather Service, National Sea Grant College Program, and the United States Lifesaving Association as they relate to rip current safety. This is one of three modules on forecasting rip currents.
Permalink![]()
![]()
![]()
Diagnosing and Forecasting Extratropical Transition: A Case Exercise on Hurricane Michael
This exercise tracks Hurricane Michael as it moved into the Maritime region of the Canadian east coast in October, 2000. Analyze data and respond to questions focusing on forecasting the progression of the storm. This case exercise accompanies the Webcast, Hurricanes Canadian Style: Extratropical Transition.
Permalink![]()
![]()
![]()
Hurricanes Canadian Style: Extratropical Transition
This Webcast is based on a presentation delivered by Jim Abraham of MSC at the Winter Weather Course in February 2001. The presentation discusses how, under the right synoptic conditions, hurricanes and tropical storms undergo a transition process to extratropical cyclones as they move into northern latitudes. During the transition process these "hybrid" systems can bring damaging weather conditions to Eastern Canada and the Northeastern States. It uses several case examples to demonstrate the process.
Permalink![]()
![]()
![]()
Creating Meteorological Products from Satellite Data
This module presents an overview of how satellite data are turned into the satellite products used by operational forecasters and the research and educational communities, etc. The module begins by describing the process of creating simple image products that use relatively simple image manipulation techniques to highlight properties such as wind-blown dust, vegetation, and cloud phase. The module then describes some of the more complex processes involved in generating quantitative products, such as cloud identification, atmospheric instability, wildfire characterization, and sea surface tempe ...
Permalink![]()
![]()
![]()
Caribbean Radar Products
This module provides examples of radar imagery from various locations in the Caribbean to demonstrate the different types of images available. Also, examples of different meteorological and non meteorological features are presented to show features seen in island locations.
Permalink![]()
![]()
![]()
Location Science Improves Everyday Life
This short video explores some of the ways that location science improves everyday life. It follows two characters, Jane and John, through the course of a typical day. Jane has a smooth trouble-free day fishing with friends, thanks in part to accurate location surveys. John, on the other hand, has an awful day traced to inaccurate surveys and out-of-date maps.
Permalink![]()
![]()
![]()
Topics in Precipitation Type Forecasting
This module presents an overview of various aspects of precipitation type forecasting. It includes sections on microphysics and the ice crystal process, application of partial thickness analysis, application of the top-down method, and an overview of model algorithms used for precipitation type analysis.
Permalink