Global Campus
The WMO Global Campus E-Library
The WMO Global Campus initiative is proud to offer this WMOLearn Library of resources. This library provides a searchable collection of educational resources, including WMO publications and education and training materials from various contributing organisations and individuals. Search by WMO competency framework, Main Topics, Region and Country, and/or Nature of Information to find materials useful for training or self-directed learning.
WMO Global Campus resources provided on this Site are provided “as is”, without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose and non-infringement. The WMO specifically does not make any warranties or representations as to the accuracy or completeness of any such resources.
You can search resources by using the filters on the right of the screen or by clicking "Refine your search" below. This will display advanced search criteria.
Browse by competencies



![]()
![]()
Definition of the Mesoscale
By the end of this module you will be able to answer... What is the mesoscale and how do we classify it? What is hydrostatic equilibrium? Why are non-hydrostatic processes so important to mesoscale meteorology? Why does forecasting mesoscale meteorology rely on model resolution? How might mesoscale processes impact fleet operations?
Available online: https://www.meted.ucar.edu/training_module.php?id=56
Published by: The University Corporation for Atmospheric Research ; 2001
By the end of this module you will be able to answer... What is the mesoscale and how do we classify it? What is hydrostatic equilibrium? Why are non-hydrostatic processes so important to mesoscale meteorology? Why does forecasting mesoscale meteorology rely on model resolution? How might mesoscale processes impact fleet operations?
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Arctic Meteorology and Oceanography
Diminishing sea ice has opened the Arctic to navigation and operations like never before. Forecasters are increasingly predicting weather in support of those operations. This module is intended to provide forecasters with a brief introduction to the Arctic, including its geography, climatology, and the forecast problems they are likely to encounter. The module follows a U.S. Coast Guard Cutter on a voyage from Dutch Harbor, in the Aleutian Islands, to Barrow, on the north coast of Alaska. Various topics are addressed along the way in a series of short, stand-alone lessons.
Available online: https://www.meted.ucar.edu/training_module.php?id=758
Published by: The University Corporation for Atmospheric Research ; 2012
Diminishing sea ice has opened the Arctic to navigation and operations like never before. Forecasters are increasingly predicting weather in support of those operations. This module is intended to provide forecasters with a brief introduction to the Arctic, including its geography, climatology, and the forecast problems they are likely to encounter. The module follows a U.S. Coast Guard Cutter on a voyage from Dutch Harbor, in the Aleutian Islands, to Barrow, on the north coast of Alaska. Various topics are addressed along the way in a series of short, stand-alone lessons.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Oceanography ; Climatology ; Wave ; Sea ice ; Marine meteorology ; Polar vortex ; Fog ; Climate services ; Lesson/ Tutorial ; Geography ; Tundra ; Arctic ; Competencies for Provision of Climate Services ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
Fire Model Matrix
The Fire Model Matrix is an on-line resource that presents four fire community models in a matrix that facilitates the exploration of the characteristics of each model. As part of the Advanced Fire Weather Forecasters Course, this matrix is meant to sensitize forecasters to the use of weather data in these fire models to forecast potential fire activity.
Available online: https://www.meted.ucar.edu/training_module.php?id=461
Published by: The University Corporation for Atmospheric Research ; 2008
The Fire Model Matrix is an on-line resource that presents four fire community models in a matrix that facilitates the exploration of the characteristics of each model. As part of the Advanced Fire Weather Forecasters Course, this matrix is meant to sensitize forecasters to the use of weather data in these fire models to forecast potential fire activity.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
ASMET 7: Forecasting Fog for Aviation: Kenya Case Study
This lesson aims to improve aviation forecasts of fog in the African airspace by teaching forecasters to make more accurate forecasts using satellite imagery, numerical weather prediction, and other available data. A process for diagnosing and forecasting fog is presented and applied to a case over the Nairobi, Kenya region. Learners assume the role of aviation forecaster, analysing various products to determine whether the current Terminal Aerodrome Forecast (TAF) is valid or needs to be amended. The lesson is intended for aviation forecasters, general weather forecasters interested in aviati ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1027
Published by: The University Corporation for Atmospheric Research ; 2013
This lesson aims to improve aviation forecasts of fog in the African airspace by teaching forecasters to make more accurate forecasts using satellite imagery, numerical weather prediction, and other available data. A process for diagnosing and forecasting fog is presented and applied to a case over the Nairobi, Kenya region. Learners assume the role of aviation forecaster, analysing various products to determine whether the current Terminal Aerodrome Forecast (TAF) is valid or needs to be amended. The lesson is intended for aviation forecasters, general weather forecasters interested in aviation meteorology, and meteorological forecasting instructors and students. This lesson is one of three aviation weather case studies developed by the ASMET project to improve aviation forecasting in Africa. They also support COMET's Review of Aeronautical Meteorology – Africa online learning curriculum, which provides training that supports the WMO/ICAO competencies for Aeronautical Meteorological Forecasters.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Fog ; Lesson/ Tutorial ; East Africa ; Kenya ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Vorticity Maxima and Comma Patterns
Vorticity maxima signatures are very common and indicate areas of ascending circulation and atmospheric forcing. The correct placement of vorticity maxima is vital to the placement of related dynamic features such as the axis of maximum winds and deformation zones. This module is part of the series “Dynamic Feature Identification: The Satellite Palette”.
Available online: https://www.meted.ucar.edu/training_module.php?id=255
Published by: The University Corporation for Atmospheric Research ; 2006
Vorticity maxima signatures are very common and indicate areas of ascending circulation and atmospheric forcing. The correct placement of vorticity maxima is vital to the placement of related dynamic features such as the axis of maximum winds and deformation zones. This module is part of the series “Dynamic Feature Identification: The Satellite Palette”.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Quasi Geostrophic Vorticity Equation
This learning object/widget is designed for upper-level undergraduates or forecaster interns who want to apply their knowledge of the Quasi-geostrophic Vorticity Equation to forecast situations. The interactivity helps users see how each variable interacts within the equation and shows data for different phase shifts of 500hPa and 1000hPa heights. Instructors can use this learning object with their own question sets as well to build more understanding and application into their dynamics/synoptic courses.
Permalink![]()
![]()
![]()
Intelligent Use of Model-Derived Products - version 2
This module, part of the "NWP Training Series: Effective Use of NWP in the Forecast Process", discusses three aspects of forecast guidance developed from raw NWP model data: Post-processing Statistical guidance Model assessment tools Post-processing methods, including a new section of downscaling of coarser resolution data, bias correction, and post-processing of ensemble forecast system data, are introduced. Interpolation of raw model data to produce the data seen by operational meteorologists is also described. Next, we present information on statistical guidance methods and techniques, incl ...
Permalink![]()
![]()
![]()
Introduction to Ocean Tides
Ocean tides profoundly impact coastal maritime operations. This module provides an introduction to the origin, characteristics, and prediction of tides. After introducing common terminology, the module examines the mechanisms that cause and modify tides, including both astronomical and meteorological effects. A discussion of tide prediction techniques and products concludes the module. This module includes rich graphics, audio narration, embedded interactions, and a companion print version.
Permalink![]()
![]()
![]()
Introduction to VIIRS Imaging and Applications
This lesson introduces the VIIRS imager that operates on the current U.S. Suomi NPP satellite and is planned for future JPSS environmental satellites. VIIRS has many advanced features that improve both spectral and spatial resolution and enable the delivery of consistent, high quality, and high resolution data to users worldwide. The lesson covers the enhanced capabilities of VIIRS and highlights some of its applications. These include single channel and multispectral products used to monitor dust, volcanic ash, convection, fog and low clouds, sea surface temperature, tropical cyclones, contra ...
Permalink![]()
![]()
![]()
Advances in Microwave Remote Sensing: Ocean Wind Speed and Direction
This Webcast covers the ocean surface wind retrieval process, the basics of microwave polarization as it relates to wind retrievals, and several operational examples. Information on the development of microwave sensors used to retrieve ocean surface wind speed and the ocean surface wind vector (speed and direction) is also included.
Permalink![]()
![]()
![]()
Analyzing Ocean Swell
This module describes the main elements to consider when analyzing wave model and buoy data. The module focuses on data products available from NOAA including spectral plots, maps, and text bulletins. East and West Coast wave-masking exercises conclude the module. The content in this module is an excerpt from the previously published COMET module Rip Currents: Forecasting.
Permalink![]()
![]()
![]()
SatFC-G: Near-IR Bands
This lesson introduces you to three of the four near-infrared imager bands (at 1.37, 1.6, and 2.2 micrometers) on the GOES R-U ABI (Advanced Baseline Imager), focusing on their spectral characteristics and how they affect what each band observes. For information on the 0.86 micrometer near-IR "veggie" band which is not included here, refer to the Visible and Near-IR Bands lesson. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Permalink![]()
![]()
![]()
Satellite Meteorology: Introduction to Using the GOES Sounder
This module, adapted for the Web from the CD-ROM released in 1998, reviews GOES sounder characteristics, data products, and applications concurrent with the GOES I(8)-P satellites. Topics covered include the electromagnetic spectrum and sounder channel selection, weighting functions for temperature and moisture determination, and assessment of GOES sounder products. Sample imagery and products are provided along with several short case examples that demonstrate how these products are beneficial to meteorological analysis and forecasting applications.
Permalink![]()
![]()
![]()
Australian Severe Thunderstorm Case Studies
In this southern hemisphere-focused module, the student can work through a major Australian severe thunderstorm event in detail and examine aspects of two other severe thunderstorm events. Follow a forecast time-line to assess data and make decisions from the pre-storm phase through the warning phase. This module was developed for and the copyrights are owned by the Bureau of Meteorology Australia.
Permalink![]()
![]()
![]()
Introduction to Electromagnetic and Electro-Optic Propagation
This lesson describes the properties of electromagnetic and electro-optical radiation and how their propagation is affected by the atmosphere and weather. Atmospheric variables that affect EM propagation include temperature, moisture, pressure, and composition. These variables control processes including refraction, absorption, and scattering.
Permalink![]()
![]()
![]()
Basics of Visible and Infrared Remote Sensing
This lesson presents the scientific and technical basis for using visible and infrared satellite imagery so forecasters can make optimal use of it for observing and forecasting the behaviour of the atmosphere. The concepts and capabilities presented are common to most international geostationary (GEO) and low-Earth orbiting (LEO) meteorological satellites since their inception, and continue to apply to both current and newer satellite constellations. The lesson reviews remote sensing and radiative transfer theory through a series of conceptual models. Discussions contain explanations of the di ...
Permalink![]()
![]()
![]()
S-290 Unit 10: Fuel Moisture
S-290 Unit 10: Fuel Moisture provides information about live and dead fuel moisture contents and their relation to fire behavior. Influences on fuel moisture and methods for estimating dead fuel and live fuel moisture in the field are summarized, and guidance is offered for assessing the potential fire danger based on fuel moisture and other fireline information. The module is part of the Intermediate Wildland Fire Behavior Course.
Permalink![]()
![]()
![]()
Microwave Remote Sensing: Land and Ocean Surface Applications, 2nd Edition
This lesson introduces the concepts and principles basic to retrieving important land and ocean surface properties using microwave remote sensing observations from polar-orbiting satellites. Section one reviews the advantages of microwave remote sensing from polar-orbiting platforms and briefly highlights some of the unique spectral characteristics that allow for differentiation between various surface types and properties. Subsequent sections present a more in-depth look at the derivation and application of microwave products that quantify four different land and ocean surface properties and ...
Permalink![]()
![]()
![]()
Introduction to Tropical Meteorology, 2nd Edition, Chapter 8: Tropical Cyclones
Tropical cyclones are the deadliest tropical weather systems. This chapter describes their seasonal and geographic variability and controls, decadal cycles, and history of naming conventions. Tropical cyclogenesis is explored in depth and the core and balance solutions for regions of the cyclone are examined. Intensity is considered in terms of inner-core dynamics, large-scale environmental controls, limits on potential intensity, satellite interpretation techniques, and classification by wind speed. Factors that influence motion are investigated. Extratropical transition is described in terms ...
Permalink![]()
![]()
![]()
Sea Ice and Products and Services of the National Ice Center
This two-hour module examines sea ice, icebergs, and the products and services of the National Ice Center and the North American Ice Service. Topics include climatology and current trends in sea ice extent and thickness; the development, classification, and drift of sea ice and icebergs; fractures, leads and polynyas; and the satellite detection of sea ice using visible, infrared, and microwave sensors.
Permalink![]()
![]()
![]()
Landfalling Fronts and Cyclones
Landfalling cyclones and their attendant fronts significantly impact the structure of mesoscale wind and precipitation fields along the west coast of North America. This module focuses on the complex interaction of the wind field with topography and the resulting effects on nearshore winds and precipitation. For example, prefrontal conditions may lead to flow blocking, development of a barrier jet, and seaward displacement of the maximum precipitation. Postfrontal conditions tend to promote windward ridging and lee troughing, which enhance along-coast flow.
Permalink![]()
![]()
![]()
Climate Variability and Change Lectures, July 2013
This lesson presents 13 recorded presentations from the 29 July–2 August, 2013 offering of the Climate Variability and Change Virtual Course (CVCVC). This five-day live facilitated online course provided an extensive background on a range of climate variability and change topics with an emphasis on developing communication skills for challenging climate topics. The topics covered in this course, while aimed primarily at NOAA operational climate services delivery staff will also be helpful for others who already possess a basic level of understanding of climate science. Presentations include: W ...
Permalink![]()
![]()
![]()
Fog: Its Processes and Impacts to Aviation and Aviation Forecasting
This module first introduces forecasters to aviation-forecast customers and their needs, and discusses how fog impacts aviation operations. The main content of the module then explains the physical processes and life cycle of radiation and advection fog, including their preconditioning environment, initiation, growth, and dissipation. The processes covered in the module include radiation (both solar and longwave), soil-atmosphere thermal interactions, turbulent mixing, the roles of condensation nuclei, and droplet settling. Each section of the module includes a set of interactive questions bas ...
Permalink![]()
![]()
![]()
Radio Wave Propagation
As a society we have become dependent on satellite communications, but satellites fail with alarming frequency. Before the advent of satellites, long distance communications were carried out with high frequency (HF) radio transmissions. This lesson examines the factors that control long-distance radio communications, with an emphasis on refraction in the ionosphere, frequency selection, and the effects of solar radiation.
Permalink![]()
![]()
![]()
Dynamic Feature Identification: The Satellite Palette
This series addresses the use of satellite imagery and focuses attention on the identification of dynamic features using high-resolution satellite imagery with NWP verification. The series will eventually include more than 20 feature presentations on topics such as comma clouds, jet streaks, deformation zones, surface features, convection, and blocking. Each feature presentation includes interactive identification exercises, analysis and diagnosis, conceptual models, and forecast implications.
Permalink