Topics
WMO Competencies > Satellite Skills and Knowledge for Operational Meteorologists
Satellite Skills and Knowledge for Operational Meteorologists |


![]()
![]()
SatFC-G: IR Bands, Excluding Water Vapor
This lesson introduces seven of the ten infrared imager bands on the GOES R-U ABI (Advanced Baseline Imager). It examines the spectral characteristics of each band to facilitate a better understanding of band selection and what each band observes, and to shed light on some of the many potential applications. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Available online: https://www.meted.ucar.edu/training_module.php?id=1269
Published by: The University Corporation for Atmospheric Research ; 2016
This lesson introduces seven of the ten infrared imager bands on the GOES R-U ABI (Advanced Baseline Imager). It examines the spectral characteristics of each band to facilitate a better understanding of band selection and what each band observes, and to shed light on some of the many potential applications. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Aerosols ; Weather forecasting ; Ozone ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
The Science of Radio Occultation and the COSMIC Mission
The lesson provides an overview of radio occultation and its contributions to our understanding of Earth's atmosphere as demonstrated by the COSMIC mission launched in 2006. The lesson is divided into three chapters: Chapter 1 describes the science of radio occultation and how atmospheric profiles are obtained. Chapter 2 focuses on the benefits of radio occultation and COSMIC observations for numerous applications related to meteorology, climate, and space weather. Chapter 3 describes the COSMIC-2/FORMOSAT-7 mission and its expected improvements to further inform meteorology, climate, and iono ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1092
Published by: The University Corporation for Atmospheric Research ; 2016
The lesson provides an overview of radio occultation and its contributions to our understanding of Earth's atmosphere as demonstrated by the COSMIC mission launched in 2006. The lesson is divided into three chapters: Chapter 1 describes the science of radio occultation and how atmospheric profiles are obtained. Chapter 2 focuses on the benefits of radio occultation and COSMIC observations for numerous applications related to meteorology, climate, and space weather. Chapter 3 describes the COSMIC-2/FORMOSAT-7 mission and its expected improvements to further inform meteorology, climate, and ionospheric applications. Each chapter contains optional In-Depth materials providing a more advanced look at that topic. Proceeding through these materials will add to the time required to complete the lesson but will result in a greater understanding of radio occultation technology and its applications.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climate ; Meteorology ; Observations ; Atmosphere ; Weather forecasting ; Numerical weather prediction ; Ionosphere ; Remote sensing ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
SatFC-G: Visible and Near-IR Bands
This lesson introduces you to the two visible and one of the near-infrared imager bands on the GOES R-U ABI (Advanced Baseline Imager), focusing on their spectral characteristics and how they affect what each band observes. Also included is a brief discussion of the customization of visible enhancements as an important consideration for improving the depiction of various features of interest. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Available online: https://www.meted.ucar.edu/training_module.php?id=1267
Published by: The University Corporation for Atmospheric Research ; 2016
This lesson introduces you to the two visible and one of the near-infrared imager bands on the GOES R-U ABI (Advanced Baseline Imager), focusing on their spectral characteristics and how they affect what each band observes. Also included is a brief discussion of the customization of visible enhancements as an important consideration for improving the depiction of various features of interest. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Aerosols ; Weather forecasting ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
WMO Product Access Guide
The Product Access Guide is a web-based resource maintained by the World Meteorological Organization to (i) facilitate online search for quality-controlled, documented satellite-based data products from providers worldwide, related expert groups, and training material, (ii) enhance the visibility of satellite data products and related material; (iii) address insufficient awareness of users, especially in developing countries. The Product Access Guide complements the WMO Information System and allows a more targeted search experience than Google or the GEO portal. This resource is made availabl ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1180
Published by: The University Corporation for Atmospheric Research ; 2015
The Product Access Guide is a web-based resource maintained by the World Meteorological Organization to (i) facilitate online search for quality-controlled, documented satellite-based data products from providers worldwide, related expert groups, and training material, (ii) enhance the visibility of satellite data products and related material; (iii) address insufficient awareness of users, especially in developing countries. The Product Access Guide complements the WMO Information System and allows a more targeted search experience than Google or the GEO portal. This resource is made available courtesy of the World Meteorological Organization Space Programme and is not produced, owned or hosted by UCAR/COMET.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Satellite-Derived Climatology Products for Monitoring Convection Over West and Central Africa
A weather forecaster’s knowledge of climatology is important to the success of a forecast, especially where convection is involved. That’s particularly true over Central and West Africa where convection has a strong diurnal cycle and usually develops over particular geographic regions and during specific time intervals. The lesson describes satellite-derived cloud climatology products and several global instability indices, all of which can be integrated with other products to forecast convection. Although the lesson uses examples of climatology products from specific months, it makes the full ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1205
Published by: The University Corporation for Atmospheric Research ; 2015
A weather forecaster’s knowledge of climatology is important to the success of a forecast, especially where convection is involved. That’s particularly true over Central and West Africa where convection has a strong diurnal cycle and usually develops over particular geographic regions and during specific time intervals. The lesson describes satellite-derived cloud climatology products and several global instability indices, all of which can be integrated with other products to forecast convection. Although the lesson uses examples of climatology products from specific months, it makes the full suite of products available for each month of the year. The lesson is aimed at weather forecasters and meteorology students who work in West and Central Africa and are interested in the area’s weather and/or climatology. Note that the lesson has been developed with funding from EUMETSAT for the ASMET project.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Cloud type ; Climate services ; Convection ; Lesson/ Tutorial ; West Africa ; Central Africa ; Sahel ; Competencies for Provision of Climate Services ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Assessing NWP with Water Vapour Imagery
You've seen it happen repeatedly. Forecasters have a tough forecast ahead of them. But how are they supposed to know which model data will be the best one to help them come to a conclusion about the situation? In situations like this, the first step should always be to assess the model data against a set of current observations that should show a 1-to-1 relationship with the model output. Which variable should be plotted? On which surface? Which current observations will make the most sense to assess against? If you know the answers to some, but not all of these questions, find these answers a ...
Permalink![]()
![]()
![]()
Using Scatterometer Wind and Altimeter Wave Estimates in Marine Forecasting
Scatterometers and altimeters provide a variety of space-based observations that are useful for marine analysis and forecasting as well as other applications. Key among the products are ocean surface winds from scatterometers and significant wave heights from altimeters. This lesson describes the basics of scatterometers and altimeters, including how they work, what they measure, and how scatterometer winds and altimeter significant wave heights are derived. It then discusses some of the challenges in using the estimates, such as dealing with ambiguities and rain contamination. The lesson also ...
Permalink![]()
![]()
![]()
WMO Observing Systems Capability Analysis and Review Tool (OSCAR)/Space
OSCAR/Space, the “satellite” component of the WMO OSCAR resource, contains updated quality-controlled information on past, present and future satellite missions, instruments and related characteristics, covering a period from 1960 up to 2050, which adds up to 500+ satellites and 800+ instruments dedicated to Earth Observation and Space Weather. In addition, OSCAR/Space provides expert assessments of the applicability of the various instruments for particular measurements. This resource can be used as a reference for studies, as a gap analysis tool, as support for planning, and for educational ...
Permalink![]()
![]()
![]()
Microwave Remote Sensing: Land and Ocean Surface Applications, 2nd Edition
This lesson introduces the concepts and principles basic to retrieving important land and ocean surface properties using microwave remote sensing observations from polar-orbiting satellites. Section one reviews the advantages of microwave remote sensing from polar-orbiting platforms and briefly highlights some of the unique spectral characteristics that allow for differentiation between various surface types and properties. Subsequent sections present a more in-depth look at the derivation and application of microwave products that quantify four different land and ocean surface properties and ...
Permalink![]()
![]()
![]()
Advanced Himawari Imager (AHI): What’s Different from the GOES-R Advanced Baseline Imager (ABI)
This brief lesson provides an overview of the AHI on Himawari and highlights its differences from the GOES-R Advanced Baseline Imager (ABI). It discusses AHI’s improved capabilities in spectral coverage, spatial resolution, and imaging interval over the MTSAT-2 imager; the differences in spectral coverage and scan strategy between AHI and ABI and the impact on products; and how AHI data and products benefit forecasters in Alaska, Pacific Region, and CONUS. Note that the lesson complements COMET’s GOES-R ABI lesson, which should be taken before going through this lesson.
Permalink![]()
![]()
![]()
Forecasting Heavy Rains and Landslides in Eastern Africa
Good rainfall draws many people to settle across the eastern Africa highlands for farming and other businesses. However, factors such as steep terrain, logging, livestock grazing, agriculture, and construction, have increased erosion and contributed to less stable slopes. These factors can lead to devastating landslides and mudslides, especially during episodes of very heavy rain. Forecasting and monitoring heavy rainfall is challenging, especially in mountainous regions that have few surface observations. This make satellite data critical for meteorologists and hydrologists forecasting for th ...
Permalink![]()
![]()
![]()
Extreme High Swell Events on the Moroccan Atlantic Coast
High swell events can develop far from the coast under cyclonic conditions, and take several days to travel to land. If early warnings are not issued, they can take an area by surprise and have a devastating impact. This lesson aims to improve the ability of marine forecasters to forecast extreme marine events related to high swells. It does so by providing background information on winds and waves, and presenting a process for monitoring and forecasting high swell events using a variety of data. These include ASCAT scatterometer wind data and the ECMWF Extreme Forecast Index (EFI) product, wh ...
Permalink![]()
![]()
![]()
Using ASCAT Wind and Other Data in Marine Forecasting
This case study lesson demonstrates the use of scatterometer wind and, to a lesser extent, altimeter significant wave height products in marine forecasting. A brief introduction to cold fronts and their impact on weather and sea state conditions sets the stage for the main part of the lesson, the case study. The case follows the passage of a cold front over the South Atlantic Ocean on 23 and 24 November 2013 when the Polarstern research vessel was transiting the area. Learners use ASCAT wind and Jason significant wave height data to help determine current conditions and evaluate GFS and WAVEWA ...
Permalink![]()
![]()
![]()
WMO Satellite User Readiness Navigator (SATURN)
The SATURN (SATellite User Readiness Navigator) developed jointly by WMO and meteorological satellite operators provides unified access to information that helps users to prepare for the new generation of meteorological satellites to be launched in the 2015-2020 timeframe. Next-generation geostationary satellites are being launched by JMA, NOAA, CMA, KMA, ROSHYDROMET and EUMETSAT, with unprecedented capabilities for severe weather monitoring, nowcasting and short range forecasting, and for a number of other application areas. However, the new systems also pose unprecedented challenges to users ...
Permalink![]()
![]()
![]()
Satellite Feature Identification: Conveyor Belts
Conveyor belts highlight important atmospheric processes that can be advantageous for making forecasts. They can be used for identifying general temperature patterns, defining the extent of cloud cover, predicting moisture return, evaluating stability, forecasting wind gusts, pinpointing cyclogenesis, and understanding the three-dimensional structure of the atmosphere. For short-term forecasts, they can even augment NWP showing the three-dimensional structure and portraying the same information as equivalent or wet-bulb potential temperature and potential vorticity surfaces. Conveyor belts mak ...
Permalink