Topics


![]()
![]()
SatFC-G: Near-IR Bands
This lesson introduces you to three of the four near-infrared imager bands (at 1.37, 1.6, and 2.2 micrometers) on the GOES R-U ABI (Advanced Baseline Imager), focusing on their spectral characteristics and how they affect what each band observes. For information on the 0.86 micrometer near-IR "veggie" band which is not included here, refer to the Visible and Near-IR Bands lesson. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Available online: https://www.meted.ucar.edu/training_module.php?id=1268
Published by: The University Corporation for Atmospheric Research ; 2016
This lesson introduces you to three of the four near-infrared imager bands (at 1.37, 1.6, and 2.2 micrometers) on the GOES R-U ABI (Advanced Baseline Imager), focusing on their spectral characteristics and how they affect what each band observes. For information on the 0.86 micrometer near-IR "veggie" band which is not included here, refer to the Visible and Near-IR Bands lesson. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Aerosols ; Weather forecasting ; Ice cloud ; Water cloud ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 3. Li J.; Hu Y.; Huang J.; et al. - Copernicus GmbH, 2011A method is developed based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) level 1 attenuated backscatter profile data for deriving the mean extinction coefficient of water droplets close to cloud top. The method is applicable to low level (cloud top <2 km), opaque water clouds in which the lidar signal is completely attenuated beyond about 100 m of penetration into the cloud. The photo multiplier tubes (PMTs) of the 532 nm detectors (parallel and perpendicular polarizations) of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) both exhibit a non-id ...
[article]A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal
![]()
![]()
Available online: http://dx.doi.org/10.5194/acp-11-2903-2011
J. Li ; Y. Hu ; J. Huang ; K. Stamnes ; Y. Yi ; S. Stamnes
in Atmospheric Chemistry and Physics (ACP) > Vol. 11. N° 3 [03/01/2011] . - p.2903-2916A method is developed based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) level 1 attenuated backscatter profile data for deriving the mean extinction coefficient of water droplets close to cloud top. The method is applicable to low level (cloud top <2 km), opaque water clouds in which the lidar signal is completely attenuated beyond about 100 m of penetration into the cloud. The photo multiplier tubes (PMTs) of the 532 nm detectors (parallel and perpendicular polarizations) of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) both exhibit a non-ideal recovery of the lidar signal after striking a strongly backscattering target (such as water cloud or surface). Therefore, the effects of any transient responses of CALIOP on the attenuated backscatter profile of the water cloud must first be removed in order to obtain a reliable (validated) attenuated backscatter profile. Then, the slope of the exponential decay of the validated water cloud attenuated backscatter profile, and the multiple scattering factor are used for deriving the mean extinction coefficient of low-level water cloud droplets close to cloud top. This novel method was evaluated and compared with the previous method which combined the cloud effective radius (3.7-μm) reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate the mean extinction coefficient. Statistical results show that the extinction coefficients derived by the new method based on CALIOP alone agree reasonbably well with those obtained in the previous study using combined CALIOP and MODIS data. The mean absolute relative difference in extinction coefficient is about 13.4%. An important advantage of the new method is that it can be used to derive the extinction coefficient also during night time, and it is also applicable when multi-layered clouds are present. Overall, the stratocumulus dominated regions experience larger day-night differences which are all negative and seasonal. However, a contrary tendency consisted in the global mean values. The global mean cloud water extinction coefficients during different seasons range from 26 to 30 km−1, and the differences between day and night time are all positive and small (about 1–2 km−1). In addition, the global mean layer-integrated depolarization ratios of liquid water clouds during different seasons range from 0.2 to 0.23, and the differences between day and night also are small, about 0.01.
Language(s): English
Format: Digital (Free)Tags: Water ; Methodology ; Water cloud ; Research
Add tag
[article]No review, please log in to add yours !