Topics


![]()
![]()
Using Climatology in Forecasting Convection in West and Central Africa
This case-study lesson provides an opportunity to apply the information in the ASMET lesson “Satellite-Derived Climatology Products for Monitoring Convection Over West and Central Africa” to a case that occurred over West and Central Africa in June 2014. It demonstrates how to integrate climatology information with satellite, global instability indices (GII), and NWP data when convection is forecast to occur.
Available online: https://www.meted.ucar.edu/training_module.php?id=1266
Published by: The University Corporation for Atmospheric Research ; 2017
This case-study lesson provides an opportunity to apply the information in the ASMET lesson “Satellite-Derived Climatology Products for Monitoring Convection Over West and Central Africa” to a case that occurred over West and Central Africa in June 2014. It demonstrates how to integrate climatology information with satellite, global instability indices (GII), and NWP data when convection is forecast to occur.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Cloud type ; Climate services ; Convection ; Lesson/ Tutorial ; West Africa ; Central Africa ; Competencies for Provision of Climate Services ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
SatFC-G: Near-IR Bands
This lesson introduces you to three of the four near-infrared imager bands (at 1.37, 1.6, and 2.2 micrometers) on the GOES R-U ABI (Advanced Baseline Imager), focusing on their spectral characteristics and how they affect what each band observes. For information on the 0.86 micrometer near-IR "veggie" band which is not included here, refer to the Visible and Near-IR Bands lesson. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Available online: https://www.meted.ucar.edu/training_module.php?id=1268
Published by: The University Corporation for Atmospheric Research ; 2016
This lesson introduces you to three of the four near-infrared imager bands (at 1.37, 1.6, and 2.2 micrometers) on the GOES R-U ABI (Advanced Baseline Imager), focusing on their spectral characteristics and how they affect what each band observes. For information on the 0.86 micrometer near-IR "veggie" band which is not included here, refer to the Visible and Near-IR Bands lesson. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Aerosols ; Weather forecasting ; Ice cloud ; Water cloud ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Satellite-Derived Climatology Products for Monitoring Convection Over West and Central Africa
A weather forecaster’s knowledge of climatology is important to the success of a forecast, especially where convection is involved. That’s particularly true over Central and West Africa where convection has a strong diurnal cycle and usually develops over particular geographic regions and during specific time intervals. The lesson describes satellite-derived cloud climatology products and several global instability indices, all of which can be integrated with other products to forecast convection. Although the lesson uses examples of climatology products from specific months, it makes the full ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1205
Published by: The University Corporation for Atmospheric Research ; 2015
A weather forecaster’s knowledge of climatology is important to the success of a forecast, especially where convection is involved. That’s particularly true over Central and West Africa where convection has a strong diurnal cycle and usually develops over particular geographic regions and during specific time intervals. The lesson describes satellite-derived cloud climatology products and several global instability indices, all of which can be integrated with other products to forecast convection. Although the lesson uses examples of climatology products from specific months, it makes the full suite of products available for each month of the year. The lesson is aimed at weather forecasters and meteorology students who work in West and Central Africa and are interested in the area’s weather and/or climatology. Note that the lesson has been developed with funding from EUMETSAT for the ASMET project.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Cloud type ; Climate services ; Convection ; Lesson/ Tutorial ; West Africa ; Central Africa ; Sahel ; Competencies for Provision of Climate Services ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Weather Observing Fundamentals
"Weather Observing Fundamentals" provides guidance for U.S. Navy Aerographer's Mates, Quartermasters, and civilian observers tasked with taking and reporting routine, special, and synoptic observations. Although the focus of this lesson is on shipboard observations, much of the content applies to land-based observing and reporting as well. The lesson details standard procedures for taking accurate weather observations and for encoding those observations on COMNAVMETOCCOM Report 3141/3. Exercises throughout the lesson and four weather identification drills at the end provide learners with oppor ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1097
Published by: The University Corporation for Atmospheric Research ; 2014
"Weather Observing Fundamentals" provides guidance for U.S. Navy Aerographer's Mates, Quartermasters, and civilian observers tasked with taking and reporting routine, special, and synoptic observations. Although the focus of this lesson is on shipboard observations, much of the content applies to land-based observing and reporting as well. The lesson details standard procedures for taking accurate weather observations and for encoding those observations on COMNAVMETOCCOM Report 3141/3. Exercises throughout the lesson and four weather identification drills at the end provide learners with opportunities to practice and build their skills. The lesson covers a large amount of content. You may wish to work through the material in multiple sessions.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather ; Sea level ; Sea ice ; Marine meteorology ; Cloud type ; Barometer ; Lesson/ Tutorial ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
Microphysical and radiative effects of aerosols on warm clouds during the Amazon biomass burning season as observed by MODIS: impacts of water vapor and land cover
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 7. Ten Hoeve J.E.; Remer L.A.; Jacobson M.Z. - Copernicus GmbH, 2011Aerosol, cloud, water vapor, and temperature profile data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are utilized to examine the impact of aerosols on clouds during the Amazonian biomass burning season in Rondônia, Brazil. It is found that increasing background column water vapor (CWV) throughout this transition season between the Amazon dry and wet seasons likely exerts a strong effect on cloud properties. As a result, proper analysis of aerosol-cloud relationships requires that data be stratified by CWV to account better for the influence of background meteorological vari ...
[article]Microphysical and radiative effects of aerosols on warm clouds during the Amazon biomass burning season as observed by MODIS: impacts of water vapor and land cover
![]()
![]()
Available online: http://dx.doi.org/10.5194/acp-11-3021-2011
in Atmospheric Chemistry and Physics (ACP) > Vol. 11. N° 7 [04/01/2011] . - p.3021-3036Aerosol, cloud, water vapor, and temperature profile data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are utilized to examine the impact of aerosols on clouds during the Amazonian biomass burning season in Rondônia, Brazil. It is found that increasing background column water vapor (CWV) throughout this transition season between the Amazon dry and wet seasons likely exerts a strong effect on cloud properties. As a result, proper analysis of aerosol-cloud relationships requires that data be stratified by CWV to account better for the influence of background meteorological variation. Many previous studies of aerosol-cloud interactions over Amazonia have ignored the systematic changes to meteorological factors during the transition season, leading to possible misinterpretation of their results. Cloud fraction (CF) is shown to increase or remain constant with aerosol optical depth (AOD), depending on the value of CWV, whereas the relationship between cloud optical depth (COD) and AOD is quite different. COD increases with AOD until AOD ~ 0.3, which is assumed to be due to the first indirect (microphysical) effect. At higher values of AOD, COD is found to decrease with increasing AOD, which may be due to: (1) the inhibition of cloud development by absorbing aerosols (radiative effect/semi-direct effect) and/or (2) a possible retrieval artifact in which the measured reflectance in the visible is less than expected from a cloud top either from the darkening of clouds through the addition of carbonaceous biomass burning aerosols within or above clouds or subpixel dark surface contamination in the measured cloud reflectance. If (1) is a contributing mechanism, as we suspect, then an empirically-derived increasing function between cloud drop number and aerosol concentration, assumed in a majority of global climate models, is inaccurate since these models do not include treatment of aerosol absorption in and around clouds. The relationship between aerosols and both CWV and clouds over varying land surface types is also analyzed. The study finds that the difference in CWV between forested and deforested land is not correlated with aerosol loading, supporting the assumption that temporal variation of CWV is primarily a function of the larger-scale meteorology. However, a difference in the response of CF to increasing AOD is observed between forested and deforested land. This suggests that dissimilarities between other meteorological factors, such as atmospheric stability, may have an impact on aerosol-cloud correlations between different land cover types.
Language(s): English
Format: Digital (Free)Tags: Aerosols ; Amazon ; Biomass ; Warm cloud ; Observations ; Water vapour ; Region III - South America
Add tag
[article]No review, please log in to add yours !
![]()
![]()
![]()
Dependence of aerosol-precipitation interactions on humidity in a multiple-cloud system
This study examines the dependence of aerosol-precipitation interactions on environmental humidity in a mesoscale cloud ensemble (MCE) which is composed of convective and stratiform clouds. The author found that increases in aerosol concentration enhance evaporative cooling, which raises not only the intensity of vorticity and entrainment but also that of downdrafts and low-level convergence. The increase in vorticity tends to suppress precipitation. The increase in low-level convergence tends to enhance precipitation by generating more secondary clouds in a muptiple-cloud system simulated her ...
Permalink![]()
![]()
![]()
Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 3. Gayet J.-F.; Mioche G.; Shcherbakov V.; et al. - Copernicus GmbH, 2011In this paper, we describe in situ observations of mid-latitude cirrus cloud band carried out on 16 May 2007 during the CIRCLE-2 experiment. The Polar Nephelometer and the Cloud Particle Imager (CPI) instruments with PMS FSSP-300 and 2D-C probes were used for the description of the optical and microphysical cloud properties. Two selected cloud regions are compared and discussed in detail. Significant differences in optical properties are evidenced in terms of 22° halo occurrences even though prevalent planar-plate ice crystals are observed in both cloud regions. Featureless scattering phase fu ...
Permalink![]()
![]()
![]()
Evaluating the effects of microphysical complexity in idealised simulations of trade wind cumulus using the Factorial Method
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 3. Dearden C.; Connolly P.J.; Choularton T.W.; et al. - Copernicus GmbH, 2011The effect of microphysical and environmental factors on the development of precipitation in warm idealised cloud is explored using a kinematic modelling framework. A simple one-dimensional column model is used to drive a suite of microphysics schemes including a flexible multi-moment bulk scheme (including both single and dual moment cloud liquid water) and a state-of-the-art bin-resolved scheme with explicit treatments of liquid and aerosol. The Factorial Method is employed to quantify and compare the sensitivities of each scheme under a set of controlled conditions, in order to isolate the ...
Permalink![]()
![]()
![]()
A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 3. Li J.; Hu Y.; Huang J.; et al. - Copernicus GmbH, 2011A method is developed based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) level 1 attenuated backscatter profile data for deriving the mean extinction coefficient of water droplets close to cloud top. The method is applicable to low level (cloud top <2 km), opaque water clouds in which the lidar signal is completely attenuated beyond about 100 m of penetration into the cloud. The photo multiplier tubes (PMTs) of the 532 nm detectors (parallel and perpendicular polarizations) of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) both exhibit a non-id ...
Permalink![]()
![]()
![]()
Satellite Meteorology: GOES Channel Selection V2
This module is an update to the previous Satellite Meteorology: GOES Channel Selection module. It reviews the five GOES imager channels and their use, incorporating conceptual visualizations and numerous imagery examples. The module also includes updated information on improvements for the GOES-13, -14 and -15 satellites. Highlights include a higher resolution 13.3 micrometer CO2 channel (GOES-14 & -15), modified spectral response of the visible channel, improved radiometric performance and pixel geolocation, and shortened data outages during the fall and spring satellite eclipse periods.
Permalink![]()
![]()
![]()
Aerosol Indirect Effects on Warm Clouds in the Grid-Point Atmospheric Model of IAP LASG (GAMIL)
Atmospheric and Oceanic Science Letters, Volume 3 Number 4. Shi Xiang-Jun; Wang Bin; Liu Xiao-Hong; et al. - Science Press, 2010Aerosol indirect effects on warm clouds are estimated in the Grid-point Atmospheric Model of IAP LASG (GAMIL) with a new two-moment cloud microphysics scheme using two different physically-based aerosol activation parameterizations: Abdul-Razzak and Ghan, and Nenes and Seinfeld. The annual global mean changes in shortwave cloud forcing from preindustrial times to present day (a measure of the aerosol indirect effects) estimated from these two parameterizations are remarkably similar: 0.76 W m-2 with the Abdul-Razzak and Ghan parameterization, and 0.78 W m-2 with the Nenes and Seinfeld paramete ...
Permalink![]()
![]()
![]()
Feature Identification Exercises: Clouds, Snow, and Ice Using MODIS
This module consists of four exercises where users identify surface features, distinguish clouds from snow on the ground, and determine cloud phase using multispectral analysis. The module also includes an overview of multispectral techniques available on many operational and research polar-orbiting satellites. A page with links to real-time polar-orbiting data and information is also included.
PermalinkPermalinkPermalinkPermalink