Topics


![]()
![]()
Understanding the Hydrologic Cycle: International Edition
This module helps students gain a basic understanding of the elements of the hydrologic cycle. The hydrologic cycle is the continuous movement and phase change of liquid water, ice, and water vapor above, on, under and through the earth's surface. This module examines the basic concepts of the hydrologic cycle including water distribution, atmospheric water, surface water, groundwater, and snowpack/snowmelt.
Available online: https://www.meted.ucar.edu/training_module.php?id=791
Published by: The University Corporation for Atmospheric Research ; 2010
This module helps students gain a basic understanding of the elements of the hydrologic cycle. The hydrologic cycle is the continuous movement and phase change of liquid water, ice, and water vapor above, on, under and through the earth's surface. This module examines the basic concepts of the hydrologic cycle including water distribution, atmospheric water, surface water, groundwater, and snowpack/snowmelt.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Hydrology ; Precipitation ; Water ; River ; Water cycle ; Runoff ; Evaporation ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Distributed Hydrologic Models for Flow Forecasts - Part 1
Distributed Hydrologic Models for Flow Forecasts – Part 1 provides a basic description of distributed hydrologic models and how they work. This module is the first in a two-part series focused on the science of distributed models and their applicability in different situations. Presented by Dr. Dennis Johnson, the module begins with a review of hydrologic models, and then examines the differences between lumped and distributed models. It explains how lumped models may be distributed by subdividing the basin and suggests when distributed hydrologic models are most appropriate. Other topics cove ...
Available online: https://www.meted.ucar.edu/training_module.php?id=545
Published by: The University Corporation for Atmospheric Research ; 2009
Distributed Hydrologic Models for Flow Forecasts – Part 1 provides a basic description of distributed hydrologic models and how they work. This module is the first in a two-part series focused on the science of distributed models and their applicability in different situations. Presented by Dr. Dennis Johnson, the module begins with a review of hydrologic models, and then examines the differences between lumped and distributed models. It explains how lumped models may be distributed by subdividing the basin and suggests when distributed hydrologic models are most appropriate. Other topics covered include the advantages of physically-based versus conceptual approaches and some strengths and challenges associated with distributed modeling.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Hydrology ; Flash flood ; Runoff ; Soil moisture ; Lesson/ Tutorial ; Map
Add tag
No review, please log in to add yours !
![]()
![]()
Weather and the Built Environment
This short course provides broadcast meteorologists, educators, and the public with an overview of the evolution of our modern urban environment with a focus on impacts on the urban watershed, air quality, and climate. This course complements the course Watersheds: Connecting Weather to the Environment and both are part of the Earth Gauge™ environmental curriculum for weathercasters and educators. This curriculum is being developed by the National Environmental Education Foundation (NEEF). [See http://www.earthgauge.net/wp/] Unit 1, Where We Live, takes a look at past and current U.S. growth p ...
Available online: https://www.meted.ucar.edu/training_module.php?id=463
Published by: The University Corporation for Atmospheric Research ; 2008
This short course provides broadcast meteorologists, educators, and the public with an overview of the evolution of our modern urban environment with a focus on impacts on the urban watershed, air quality, and climate. This course complements the course Watersheds: Connecting Weather to the Environment and both are part of the Earth Gauge™ environmental curriculum for weathercasters and educators. This curriculum is being developed by the National Environmental Education Foundation (NEEF). [See http://www.earthgauge.net/wp/] Unit 1, Where We Live, takes a look at past and current U.S. growth patterns and the way our urban areas have evolved from compact population centers to automobile-dependent sprawl. Unit 2, Impacts on the Watershed, explores how the built environment affects the water that moves through an urban watershed. Unit 3, Impacts on the Atmosphere, highlights the way our urban landscape and industrial activities impact the air we breathe and the local climate. Each unit includes information on ways to reduce our impact on our water and air with ideas ranging from simple changes in our commuting and housekeeping habits to changes in how we build houses and roads.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Air pollution ; Water pollution ; Runoff ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
River Forecasting Case Study
This module takes the learner through the considerations for the river forecasting decisions associated with the remnants of Hurricane Ivan on 17-19 September, 2004 for the Susquehanna River system in Pennsylvania and New York. The module assists the learner with applying the concepts covered in the foundation topics of the Basic Hydrologic Sciences course. Some of the specific topics pertinent to this case are soil conditions, the impact of QPF on runoff, runoff models, runoff processes, routed flow and stage-discharge relationships. Observations of upstream conditions and comparisons to hist ...
Available online: https://www.meted.ucar.edu/training_module.php?id=266
Published by: The University Corporation for Atmospheric Research ; 2007
This module takes the learner through the considerations for the river forecasting decisions associated with the remnants of Hurricane Ivan on 17-19 September, 2004 for the Susquehanna River system in Pennsylvania and New York. The module assists the learner with applying the concepts covered in the foundation topics of the Basic Hydrologic Sciences course. Some of the specific topics pertinent to this case are soil conditions, the impact of QPF on runoff, runoff models, runoff processes, routed flow and stage-discharge relationships. Observations of upstream conditions and comparisons to historic crests are also examined to assist with operational flood forecast decisions. The core foundation topics are recommended as a prerequisite since this module assumes some pre-existing knowledge of hydrologic principles.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Hydrology ; Precipitation ; Runoff ; Soil moisture ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Snowmelt Processes
This module helps the student develop an understanding of the contribution of snowmelt in the hydrologic forecasting process. The module first explains the influences of wind, sun, terrain, and vegetation on snow water distribution and then discusses the evolution of snowpack characteristics. From there, the student will learn about energy exchanges between the snow and the atmosphere and how that affects how quickly and how completely snow will melt. Finally, an explanation is presented of water flow through snow and the fate of that water when it reaches the ground surface. The lesson will b ...
Available online: https://www.meted.ucar.edu/training_module.php?id=247
Published by: The University Corporation for Atmospheric Research ; 2007
This module helps the student develop an understanding of the contribution of snowmelt in the hydrologic forecasting process. The module first explains the influences of wind, sun, terrain, and vegetation on snow water distribution and then discusses the evolution of snowpack characteristics. From there, the student will learn about energy exchanges between the snow and the atmosphere and how that affects how quickly and how completely snow will melt. Finally, an explanation is presented of water flow through snow and the fate of that water when it reaches the ground surface. The lesson will be highlighted with brief examples of actual snowmelt cases.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Hydrology ; Flood ; Runoff ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Flash Flood Case Studies
This module takes the learner through seven case studies of flash flood events that occurred in the conterminous U.S. between 2003 and 2006. The cases covered include: * 30-31 August 2003: Chase & Lyon Counties, KS * 16-17 September 2004: Macon County, NC * 31 July 2006: Santa Catalina Mountains near Tucson, AZ * 25 December 2003: Fire burn area near San Bernardino, CA * 30 August 2004: Urban flash flood in Richmond, VA * 19-20 August 2003: Urban flash flood in Las Vegas, NV * 9 October 2005: Cheshire County, NH This module assists the learner in applying the concepts covered in the foundation ...
Permalink![]()
![]()
![]()
River Ice Processes
The “River Ice Processes” module provides information on flooding associated with river ice jams. In this webcast, Dr. Kate White, nationally-recognized expert on river ice, explores basic river ice processes including the formation, growth, breakup, and transport of river ice and how it can become jammed, triggering floods. In addition, Dr. White covers the current, state-of-the-art ice jam forecasting, and current ice-modeling research and development being conducted by the U.S. Army Corps of Engineers. As a foundation topic for the Basic Hydrologic Science course, this module may be taken o ...
Permalink![]()
![]()
![]()
Flash Flood Processes
According to NOAA’s National Weather Service, a flash flood is a life-threatening flood that begins within 6 hours--and often within 3 hours--of a causative event. That causative event can be intense rainfall, the failure of a dam, levee, or other structure that is impounding water, or the sudden rise of water level associated with river ice jams. The “Flash Flood Processes” module offers an introduction to the distinguishing features of flash floods, the underlying hydrologic influences and the use of flash flood guidance (FFG) products. Through use of rich illustrations, animations, and inte ...
Permalink![]()
![]()
![]()
Runoff Processes
The Runoff Processes module offers a thorough introduction to the runoff processes critical for flood and water supply prediction. Through the use of rich illustrations, animations, and interactions, this module explains key terminology and concepts including paths to runoff, basin and soil properties and runoff modeling. It also provides an introduction to the National Weather Service River Forecast System (NWSRFS). As a foundation topic for the Basic Hydrologic Science course, this module may be taken on its own or used as a supporting topic to provide factual scientific information to stude ...
Permalink![]()
![]()
![]()
Understanding the Hydrologic Cycle
This module helps students gain a basic understanding of the elements of the hydrologic cycle. Making use of illustrations, animations, and interactions, this module examines the basic concepts of the hydrologic cycle including water distribution, atmospheric water, surface water, groundwater, and snowpack/snowmelt.
Permalink![]()
![]()
![]()
Unit Hydrograph Theory
The role of unit hydrograph theory in the flood prediction process is to provide an estimate of streamflow given the precipitation. A unit hydrograph shows the temporal change in flow, or discharge, per unit of runoff from excess precipitation. In other words, the unit hydrograph shows how the flow of a stream will be affected over time by the addition of one unit of runoff. This module offers a thorough introduction to the use of unit hydrographs and the application of unit hydrograph theory in flood prediction. Through use of rich illustrations, animations, and interactions, this module expl ...
PermalinkPermalinkPermalink![]()
![]()
![]()
Operational hydrology report (OHR), 24. Level and discharge measurements under difficult conditions
The report, approved by Commission for Hydrology at its seventh session in 1984, constitutes valuable guidance for hydrologists on measuring river flow under difficult conditions and supplements the Guide to hydrological practices (WMO-No. 168) and the Manual on stream gauging (WMO-No. 519).
Permalink![]()
![]()
![]()
Operational hydrology report (OHR), 23. Intercomparison of models of snowmelt runoff
This report contains the full results of the WMO project on intercomparison of models of snowmelt runoff which was initiated in 1976 and completed in 1983.
Permalink