Topics


![]()
![]()
Reservoir Pool Elevation: Considerations for Long-term Asset Management and Planning
Long-term management of critical water resources infrastructure needs to incorporate projected changes to environmental conditions. Reservoirs form the heart of water resource assets. Long-range plans for the repair, replacement, maintenance and renovation of these facilities depend on accurate projections of reservoir pool elevations. Environmental conditions, in turn, dictate the magnitude and timing of inflows and outflows from reservoirs, and thus the resulting water surface elevation. This lesson explores the factors that affect reservoir pool elevation and the considerations and challeng ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1324
Published by: The University Corporation for Atmospheric Research ; 2017
Long-term management of critical water resources infrastructure needs to incorporate projected changes to environmental conditions. Reservoirs form the heart of water resource assets. Long-range plans for the repair, replacement, maintenance and renovation of these facilities depend on accurate projections of reservoir pool elevations. Environmental conditions, in turn, dictate the magnitude and timing of inflows and outflows from reservoirs, and thus the resulting water surface elevation. This lesson explores the factors that affect reservoir pool elevation and the considerations and challenges that changing reservoir pool elevations pose to managing existing water resources infrastructure.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climate ; Precipitation ; Irrigation ; Runoff ; Evaporation ; Climate services ; Lesson/ Tutorial ; Competencies for Provision of Climate Services
Add tag
No review, please log in to add yours !
![]()
![]()
Met 101: Introduction to the Atmosphere
This lesson provides an overview of Earth’s atmosphere, its vertical structure, the fundamental forces acting on air, and how the atmosphere's composition affects the colors we see in the sky. The lesson also includes information about how Earth receives energy from the Sun as solar and infrared radiation, and the mechanisms for transferring heat around the globe. Learners will be introduced to the components of Earth’s water cycle, and also briefly explore the main types of systems used to observe the atmosphere.
Available online: https://www.meted.ucar.edu/training_module.php?id=1287
Published by: The University Corporation for Atmospheric Research ; 2017
This lesson provides an overview of Earth’s atmosphere, its vertical structure, the fundamental forces acting on air, and how the atmosphere's composition affects the colors we see in the sky. The lesson also includes information about how Earth receives energy from the Sun as solar and infrared radiation, and the mechanisms for transferring heat around the globe. Learners will be introduced to the components of Earth’s water cycle, and also briefly explore the main types of systems used to observe the atmosphere.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Oceans ; Weather ; Observations ; Precipitation ; Water cycle ; Runoff ; Evaporation ; Ionosphere ; Stratosphere ; Troposphere ; Mesosphere ; Atmospheric composition ; Convection ; Heat balance ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Overview of Watershed and Channel Sedimentation
This lesson provides an overview of the primary influences of watershed and channel sedimentation. In a short narrated portion of the lesson, we explore a section of the Rio Grande watershed and channel in New Mexico using Google Earth imagery, river profiles, and graphic animations. We highlight features of the upland catchments, the river channel, and the Elephant Butte Reservoir. We then demonstrate how environmental factors (climate, geography, land use changes, reservoirs) impact the supply and movement of sediments for the Rio Grande and other rivers. The focus is on the three primary pr ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1123
Published by: The University Corporation for Atmospheric Research ; 2015
This lesson provides an overview of the primary influences of watershed and channel sedimentation. In a short narrated portion of the lesson, we explore a section of the Rio Grande watershed and channel in New Mexico using Google Earth imagery, river profiles, and graphic animations. We highlight features of the upland catchments, the river channel, and the Elephant Butte Reservoir. We then demonstrate how environmental factors (climate, geography, land use changes, reservoirs) impact the supply and movement of sediments for the Rio Grande and other rivers. The focus is on the three primary processes in sedimentation: generation, transport, and deposition. The lesson then addresses natural climate and weather influences along with some observed and projected trends associated with climate change.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climate change ; Tropical cyclone ; Drought ; Global warming ; Climate projection ; River ; Irrigation ; Wildfire ; Flash flood ; Sedimentation ; Runoff ; Evaporation ; Erosion ; North Atlantic Oscillation (NAO) ; La Niña ; Climate services ; Agriculture ; Lesson/ Tutorial ; Hydraulic ; Competencies for Provision of Climate Services
Add tag
No review, please log in to add yours !
![]()
![]()
Fog: Its Processes and Impacts to Aviation and Aviation Forecasting
This module first introduces forecasters to aviation-forecast customers and their needs, and discusses how fog impacts aviation operations. The main content of the module then explains the physical processes and life cycle of radiation and advection fog, including their preconditioning environment, initiation, growth, and dissipation. The processes covered in the module include radiation (both solar and longwave), soil-atmosphere thermal interactions, turbulent mixing, the roles of condensation nuclei, and droplet settling. Each section of the module includes a set of interactive questions bas ...
Available online: https://www.meted.ucar.edu/training_module.php?id=795
Published by: The University Corporation for Atmospheric Research ; 2010
This module first introduces forecasters to aviation-forecast customers and their needs, and discusses how fog impacts aviation operations. The main content of the module then explains the physical processes and life cycle of radiation and advection fog, including their preconditioning environment, initiation, growth, and dissipation. The processes covered in the module include radiation (both solar and longwave), soil-atmosphere thermal interactions, turbulent mixing, the roles of condensation nuclei, and droplet settling. Each section of the module includes a set of interactive questions based on the information presented. The module concludes with a discussion of the physical processes and life-cycles of terrain-induced and pre- and post- frontal fog.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Evaporation ; Fog ; Solar radiation ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Understanding the Hydrologic Cycle: International Edition
This module helps students gain a basic understanding of the elements of the hydrologic cycle. The hydrologic cycle is the continuous movement and phase change of liquid water, ice, and water vapor above, on, under and through the earth's surface. This module examines the basic concepts of the hydrologic cycle including water distribution, atmospheric water, surface water, groundwater, and snowpack/snowmelt.
Available online: https://www.meted.ucar.edu/training_module.php?id=791
Published by: The University Corporation for Atmospheric Research ; 2010
This module helps students gain a basic understanding of the elements of the hydrologic cycle. The hydrologic cycle is the continuous movement and phase change of liquid water, ice, and water vapor above, on, under and through the earth's surface. This module examines the basic concepts of the hydrologic cycle including water distribution, atmospheric water, surface water, groundwater, and snowpack/snowmelt.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Hydrology ; Precipitation ; Water ; River ; Water cycle ; Runoff ; Evaporation ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Introduction to Tropical Meteorology, 2nd Edition, Chapter 5: The Distribution of Moisture and Precipitation
Moisture and precipitation distribution governs life in the tropics. Surplus heating and rising motion in the tropics ignites the global water and energy cycles and influences weather in the midlatitudes. This chapter presents the horizontal and vertical distribution of water vapor, tropical cloud formation and distribution, the lifecycle and precipitation characteristics of tropical mesoscale convective systems, and the variability of tropical precipitation on yearly, seasonal, and hourly time-scales.
Permalink![]()
![]()
![]()
Influence of Model Physics on NWP Forecasts - version 2
This module, part of the "NWP Training Series: Effective Use of NWP in the Forecast Process", describes model parameterizations of surface, PBL, and free atmospheric processes, such as surface snow processes, soil thermal and moisture processes, surface vegetation effects such as evapotranspiration, radiative processes involving clouds and trace gases, and turbulent processes in the PBL and free atmosphere. It specifically addresses how models treat these processes, how such processes can potentially interact with each other, and how they can influence forecasts of sensible weather elements. B ...
Permalink![]()
![]()
![]()
Mesoscale Banded Precipitation
Precipitation frequently falls and accumulates in discrete bands with accumulations that vary markedly over short distances. This module examines several mechanisms that result in mesoscale banded precipitation, focusing primarily on processes at work in midlatitude cyclones. The module starts with a review of the Norwegian and conveyor belt cyclone models. Then several banding processes are examined in detail, including deformation/frontogenesis, the Trowal (Trough of Warm Air Aloft), frontal merger, CSI/slantwise convection, and melting/evaporation-induced circulations. The module concludes ...
Permalink![]()
![]()
![]()
Understanding the Hydrologic Cycle
This module helps students gain a basic understanding of the elements of the hydrologic cycle. Making use of illustrations, animations, and interactions, this module examines the basic concepts of the hydrologic cycle including water distribution, atmospheric water, surface water, groundwater, and snowpack/snowmelt.
Permalink![]()
![]()
![]()
Forecasting Radiation Fog
This is the second module in the Mesoscale Meteorology Primer series. This module starts with a forecast scenario that occurs during a winter radiation fog event in the Central Valley of California. After that, a conceptual section covers the physical processes of radiation fog through its life cycle. Operational sections addressing fog detection and forecasting conclude the module
PermalinkPermalinkPermalink![]()
![]()
![]()
Operational hydrology report (OHR), 22. Casebook on operational assessement of areal evaporation
The loss of fresh water through evaporation and evapotranspiration directly affects the availability of water resources and their development and management for human requirements. In view of the difficulties inherent in measuring areal evaporation with acceptable accuracy, it was decided to collect case studies of various methods of approach to provide practical guidance. Fifteen case studies were selected and are presented here.
PermalinkPermalink![]()
![]()
![]()
Evaporation losses from containers of hellmann precipitation gauges
The evaporation losses from the container of an old galvanized Hellmann gauge, 7·1 cm2 aperture area, were five times greater than the losses from the container of a new gauge, 1·8 cm2 aperture area, of almost the same grey colour. The maximum evaporation from the old gauge amounted to 0·75 mm per day. The same evaporation losses in the Baye of Montreux basin over a period of 10 years from April to September amounted to 0·09 mm per measurement or to 0·7 per cent of the precipitation catch. There is a relationship between the monthly percentage evaporation losses and the ratio of evaporation ti ...
Permalink