Topics


![]()
![]()
Tsunamis
This lesson introduces the science of tsunamis: their causes, initiation process, properties, propagation, inundation, and long-term effects. Through numerous animations, historical images, video, and interactive exercises, learners discover the ways tsunamis interact with and affect the world. The lesson is intended for Weather Forecast Office staff — particularly National Weather Service Warning Coordination Meteorologists — who desire a better understanding of tsunamis in their role as issuers of tsunami warning-related messages. But it will also benefit anyone wanting to learn more about h ...
Available online: https://www.meted.ucar.edu/training_module.php?id=831
Published by: The University Corporation for Atmospheric Research ; 2010
This lesson introduces the science of tsunamis: their causes, initiation process, properties, propagation, inundation, and long-term effects. Through numerous animations, historical images, video, and interactive exercises, learners discover the ways tsunamis interact with and affect the world. The lesson is intended for Weather Forecast Office staff — particularly National Weather Service Warning Coordination Meteorologists — who desire a better understanding of tsunamis in their role as issuers of tsunami warning-related messages. But it will also benefit anyone wanting to learn more about how tsunamis work, including emergency managers, broadcasters, college and high school students, and the general public.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Earthquake ; Sea level ; Wave ; Tsunami ; Marine meteorology ; Lesson/ Tutorial ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
Tsunami Warning Systems
Tsunami Warning Systems describes the processes involved in anticipating, detecting, and warning for a tsunami by summarizing data collection, modeling, analysis, and alert procedures used at NOAA's Tsunami Warning Centers. A simulated event and past tsunami occurrences are used to highlight warning system processes for determining the tsunami threat based on seismic and sea level data and tsunami forecast models. Message communication and local response are also addressed as final components of any warning system. The module is intended for Weather Forecast Office staff and emergency managers ...
Available online: https://www.meted.ucar.edu/training_module.php?id=786
Published by: The University Corporation for Atmospheric Research ; 2010
Tsunami Warning Systems describes the processes involved in anticipating, detecting, and warning for a tsunami by summarizing data collection, modeling, analysis, and alert procedures used at NOAA's Tsunami Warning Centers. A simulated event and past tsunami occurrences are used to highlight warning system processes for determining the tsunami threat based on seismic and sea level data and tsunami forecast models. Message communication and local response are also addressed as final components of any warning system. The module is intended for Weather Forecast Office staff and emergency managers who require a better understanding of the technical aspects of tsunami warning delivery. The module will also benefit anyone wanting to learn more about the components of tsunami warning systems.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Earthquake ; Sea level ; Wave ; Tsunami ; Marine meteorology ; Lesson/ Tutorial ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
Analyzing Ocean Swell
This module describes the main elements to consider when analyzing wave model and buoy data. The module focuses on data products available from NOAA including spectral plots, maps, and text bulletins. East and West Coast wave-masking exercises conclude the module. The content in this module is an excerpt from the previously published COMET module Rip Currents: Forecasting.
Available online: https://www.meted.ucar.edu/training_module.php?id=492
Published by: The University Corporation for Atmospheric Research ; 2008
This module describes the main elements to consider when analyzing wave model and buoy data. The module focuses on data products available from NOAA including spectral plots, maps, and text bulletins. East and West Coast wave-masking exercises conclude the module. The content in this module is an excerpt from the previously published COMET module Rip Currents: Forecasting.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Wave ; Marine meteorology ; Lesson/ Tutorial ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
Operational Use of Wave Watch III
In this webcast, Dr. Hendrik Tolman (NOAA Marine Analysis Branch) discusses the operational use of NOAA WAVEWATCH III. The NOAA WAVEWATCH III is a forecast system that predicts wind-generated ocean waves. Dr. Tolman discusses what WAVEWATCH III can and cannot predict along with the model physics, numerics, and forecast products. Numerous examples illustrate the practical effects of several recent model improvements including high-resolution hurricane winds, surf zone physics, wave partitioning, and use of a multi-grid mosaic. The webcast concludes with a discussion of future improvements plann ...
Available online: https://www.meted.ucar.edu/training_module.php?id=504
Published by: The University Corporation for Atmospheric Research ; 2008
In this webcast, Dr. Hendrik Tolman (NOAA Marine Analysis Branch) discusses the operational use of NOAA WAVEWATCH III. The NOAA WAVEWATCH III is a forecast system that predicts wind-generated ocean waves. Dr. Tolman discusses what WAVEWATCH III can and cannot predict along with the model physics, numerics, and forecast products. Numerous examples illustrate the practical effects of several recent model improvements including high-resolution hurricane winds, surf zone physics, wave partitioning, and use of a multi-grid mosaic. The webcast concludes with a discussion of future improvements planned for the wave forecast system.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Wave ; Marine meteorology ; Lesson/ Tutorial ; Marine Weather Forecasters ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Rip Currents: Forecasting
This is the third and final part in a training series on rip currents. The topic of forecasting daily rip current risk can be explored by operational forecasters, many of whom do not have a physical oceanography background. The hazards of rip currents and a review of the factors that contribute to rip current development are discussed. To demonstrate the process of a rip current forecast and as an example of what can locally be developed at the user’s station, the module presents a rip current worksheet that is used operationally at some forecast offices. Various parts of this worksheet requir ...
Available online: https://www.meted.ucar.edu/training_module.php?id=217
Published by: The University Corporation for Atmospheric Research ; 2006
This is the third and final part in a training series on rip currents. The topic of forecasting daily rip current risk can be explored by operational forecasters, many of whom do not have a physical oceanography background. The hazards of rip currents and a review of the factors that contribute to rip current development are discussed. To demonstrate the process of a rip current forecast and as an example of what can locally be developed at the user’s station, the module presents a rip current worksheet that is used operationally at some forecast offices. Various parts of this worksheet require the use of observed data and model output. These resources range from NOS Detailed Wave Summary reports to NOAA WAVEWATCH III model polar plots of wave spectral energy. The usage of these products in terms of rip current forecasting using the worksheet is explained in detail. In particular, the issue of “wave masking” in the 2-D model plots is illustrated. In order to practice with the products presented, the user is provided two cases (East and West Coasts). Other factors discussed include tide and lake levels as well as situational awareness. Lastly, a summary of important points from the module and experienced forecast offices is provided. Users are encouraged to examine the state of their office’s rip current program and develop a plan for improvement based on concepts and ideas presented in this module.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Tide ; Wave ; Marine meteorology ; Lesson/ Tutorial ; Marine Weather Forecasters
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Winds in the Marine Boundary Layer: A Forecaster's Guide
This module is intended for experienced forecasters moving from a land-based area to a coastal or Great Lakes region where both over-land and over-water forecast areas exist. This module highlights the differences between marine boundary layer and terrestrial boundary layer winds. The experienced forecaster is relatively familiar with the boundary layer over land and the associated implications for the wind field. Using this as a base, the module compares this known quantity with the lesser-known processes that occur in the marine boundary layer. Three major topics that influence marine bounda ...
Permalink![]()
![]()
![]()
JCOMM Technical Report, 33. Techniques and benefits of satellite data in wind and wave models
World Meteorological Organization (WMO) ; Bidlot J.-R.; Abdalla S.; et al. - WMO, 2006 (WMO/TD-No. 1357)This report documents techniques and benefits of satellite data in wind and wave models. It provides an overview of available satellite wind and wave data and their possible usage based on the questionnaire prepared by the Expert Team on Wind Waves and Storm Surges (ETWS) to collect information on Members’ use of wind and wave satellite data, in particular, regarding type of sensor used, satellite name, real time use, product name, data format, provider, areas of concern, purpose of use, quality control and status of the data use. The compilation of the questionnaires’ replies contributes to d ...
Permalink![]()
![]()
![]()
JCOMM Technical Report, 30. Verification of operational global and regional wave forecasting systems against measurements from moored buoys
World Meteorological Organization (WMO) ; Holt M.W.; Intergovernmental Oceanographic Commission (IOC) - WMO, 2006 (WMO/TD-No. 1333)Regional or basin-scale wave forecast model systems have been developed and run at various forecast modelling centres since the late 1970s, and as computer power grew during the 1980s, with the availability of global numerical weather prediction (NWP) models, global wave forecast models were established, often with nested regional wave models. Since that time, with increasing supercomputer capacity, the resolution of both global and regional wave models has increased, so that in 2004 a global wave model will typically have a grid spacing of ~50 km, close to or matching the resolution of the gl ...
Permalink![]()
![]()
![]()
Wave Life Cycle I: Generation
This is the second in a series of training lessons on marine wind and waves. The first lesson discussed wave types and characteristics and is a good primer to this next marine training topic. Wave Life Cycle I: Generation examines how wind creates waves and the inter-relationships between wind speed, wind duration, and fetch length during this process. These three factors are important to predicting wave height and what will limit wave growth. Additional topics include fully developed seas, observation sources, and various special wind events such as coastal jets and instability mixing in the ...
Permalink![]()
![]()
![]()
Wave Types and Characteristics
This is the first in a series of new marine meteorology modules based on COMET’s old laser disk and CD-ROM modules on marine meteorology. This module is an introduction to waves and their associated characteristics. Several types of waves are presented, from the common wind wave to the rare tsunami wave. The basic physical, mathematical, and statistical traits of waves are discussed, along with how they change once waves become swell. This material serves as a building block to subsequent modules on wave generation, propagation, and dispersion.
Permalink![]()
![]()
![]()
JCOMM Technical Report, 09. Estimation of extreme wind wave heights
World Meteorological Organization (WMO) ; Intergovernmental Oceanographic Commission (IOC) - WMO, 2000 (WMO/TD-No. 1041)
PermalinkPermalinkPermalinkPermalinkPermalink