Topics


![]()
![]()
The Forecast Process: Using the Forecast Funnel
This lesson was developed by meteorologist, Dr. Mick Pope, with sponsorship from the Australian Bureau of Meteorology (BoM). The lesson is a somewhat broad-brush review of the overall forecast process, but with specific application of the forecast funnel approach as used by Australia's Bureau of Meteorology (BoM). The forecast process components include decision support and communication, use of numerical weather prediction, and applying the forecast funnel approach. The forecast funnel is described in detail, along with the forecaster time pyramid, and it is applied using a BoM forecast polic ...
Available online: https://www.meted.ucar.edu/training_module.php?id=10004
Published by: The University Corporation for Atmospheric Research ; 2019
This lesson was developed by meteorologist, Dr. Mick Pope, with sponsorship from the Australian Bureau of Meteorology (BoM). The lesson is a somewhat broad-brush review of the overall forecast process, but with specific application of the forecast funnel approach as used by Australia's Bureau of Meteorology (BoM). The forecast process components include decision support and communication, use of numerical weather prediction, and applying the forecast funnel approach. The forecast funnel is described in detail, along with the forecaster time pyramid, and it is applied using a BoM forecast policy example.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; North Atlantic Oscillation (NAO) ; Jet stream ; Rossby Waves ; Outgoing longwave radiation (OLR) ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Instrumentation and Measurement of Wind
This lesson summarizes the science and techniques used to measure atmospheric wind. It presents an overview of the main sensor types for wind, including mechanical, electronic, and drifting-position sensors as well as sensors relying on impact pressure and sensors utilizing timing or Doppler shifts. The advantages and limitations of the sensor types and information about uncertainty and errors are reviewed with a focus on understanding which sensors might be best for particular applications. The lesson concludes with wind measurement applications including turbulence profiles, turbulence flux ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1603
Published by: The University Corporation for Atmospheric Research ; 2019
This lesson summarizes the science and techniques used to measure atmospheric wind. It presents an overview of the main sensor types for wind, including mechanical, electronic, and drifting-position sensors as well as sensors relying on impact pressure and sensors utilizing timing or Doppler shifts. The advantages and limitations of the sensor types and information about uncertainty and errors are reviewed with a focus on understanding which sensors might be best for particular applications. The lesson concludes with wind measurement applications including turbulence profiles, turbulence flux measurements, wind speed analysis, and variance spectra.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Wind ; Radiosonde ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Met 101: Basic Weather Processes
This lesson provides an overview of basic weather processes, beginning with how the distribution of incoming solar energy helps to establish Earth’s atmospheric circulations. Learners will gain an understanding of the differences between weather and climate, and how Earth’s winds tend to have dominant patterns determined by region. An introduction to atmospheric stability, clouds, precipitation processes, and thunderstorm characteristics is also included, along with an introduction to weather impacts affecting aviation operations.
Available online: https://www.meted.ucar.edu/training_module.php?id=1289
Published by: The University Corporation for Atmospheric Research ; 2017
This lesson provides an overview of basic weather processes, beginning with how the distribution of incoming solar energy helps to establish Earth’s atmospheric circulations. Learners will gain an understanding of the differences between weather and climate, and how Earth’s winds tend to have dominant patterns determined by region. An introduction to atmospheric stability, clouds, precipitation processes, and thunderstorm characteristics is also included, along with an introduction to weather impacts affecting aviation operations.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climate ; Weather ; Climatology ; Satellite ; Flood ; Precipitation ; Snow ; Flash flood ; Tornado ; Turbulence ; Radiosonde ; Freezing rain ; Jet stream ; Remote sensing ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Forecasting Clear Air Turbulence for Aviation
This case-based, interactive lesson teaches a process for forecasting clear air turbulence (CAT) and applies it to a case that occurred over the U.S. Information about the synoptic patterns that generate CAT and the products and indices used to identify it are woven into the case. Some of this information is presented in optional sections intended for those who are unfamiliar with the material or want a refresher. The lesson is aimed at national and international forecasters who make aviation forecasts.
Available online: https://www.meted.ucar.edu/training_module.php?id=1138
Published by: The University Corporation for Atmospheric Research ; 2016
This case-based, interactive lesson teaches a process for forecasting clear air turbulence (CAT) and applies it to a case that occurred over the U.S. Information about the synoptic patterns that generate CAT and the products and indices used to identify it are woven into the case. Some of this information is presented in optional sections intended for those who are unfamiliar with the material or want a refresher. The lesson is aimed at national and international forecasters who make aviation forecasts.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Jet stream ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Introduction to the NWS National Blend of Global Models
The National Blend of Global Models was developed to utilize the best available science and provide a consistent National Weather Service forecast product across the U.S. This lesson describes the background and motivation for the National Blend and includes comparisons of Blend forecasts with current guidance. The lesson also offers a short summary of future plans and training related to the National Blend.
Available online: https://www.meted.ucar.edu/training_module.php?id=1185
Published by: The University Corporation for Atmospheric Research ; 2015
The National Blend of Global Models was developed to utilize the best available science and provide a consistent National Weather Service forecast product across the U.S. This lesson describes the background and motivation for the National Blend and includes comparisons of Blend forecasts with current guidance. The lesson also offers a short summary of future plans and training related to the National Blend.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Wind ; Numerical weather prediction ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Introduction to Meteorological Charting
This lesson provides a brief overview of surface and upper-air data and how these data are plotted on meteorological charts. The content introduces various charting and reporting techniques, including station models, contour analyses, streamlines, and upper air maps. Examples cover both the Northern Hemisphere and Southern Hemisphere and provide learners with opportunities to practice recognizing frequently used weather symbols. Supplemental materials include three Weather Symbol Identification drills. Completing these drills may require approximately 1-1.5 hours above the length of time estim ...
Permalink![]()
![]()
![]()
Overview of Watershed and Channel Sedimentation
This lesson provides an overview of the primary influences of watershed and channel sedimentation. In a short narrated portion of the lesson, we explore a section of the Rio Grande watershed and channel in New Mexico using Google Earth imagery, river profiles, and graphic animations. We highlight features of the upland catchments, the river channel, and the Elephant Butte Reservoir. We then demonstrate how environmental factors (climate, geography, land use changes, reservoirs) impact the supply and movement of sediments for the Rio Grande and other rivers. The focus is on the three primary pr ...
Permalink![]()
![]()
![]()
Topics in Dynamic Meteorology: Pressure Gradient Force
This module is a learning object on a foundational aspect of dynamic meteorology, the pressure gradient force. As a learning object, it is meant to supplement other teaching material in a course by elucidating a specific concept. The horizontal pressure gradient force is presented through an interactive tool which allows a student to adjust pressures on an idealized surface map and examine the horizontal accelerations produced in response. Three short exercises are provided to reinforce the concepts.
Permalink![]()
![]()
![]()
Introduction to Ensembles: Forecasting Hurricane Sandy
This module provides an introduction to ensemble forecast systems with an operational case study of Hurricane Sandy. The module concentrates on models from NCEP and FNMOC available to forecasters in the U.S. Navy, including NAEFS (North American Ensemble Forecast System), and NUOPC (National Unified Operational Prediction Capability). Probabilistic forecasts of winds and waves developed from these ensemble forecast systems are applied to a ship transit and coastal resource protection. Lessons integrated in the case study provide information on ensemble statistics, products, bias correction and ...
Permalink![]()
![]()
![]()
Fire Weather Patterns in Australia: Southeast Australia
The module illustrates the typical synoptic pattern influencing fire weather in southeast Australia. A case study provides insight into how experienced forecasters combine the four key ingredients—wind, temperature, dew point temperature, and fuel state—to produce a fire danger index value and resulting forecast policy map. Then, a case exercise allows the learner to practice using weather and fuel data to create a fire weather forecast policy map for southeastern Australia.
Permalink![]()
![]()
![]()
Nowcasting for Aviation in Africa
Nowcasting for Aviation in Africa summarizes techniques and best practices for developing area-specific forecasts at very short (0-6 hour) timescales. This 1-hour lesson presents a case study focused on interpreting threats and communicating correct warning information for a weather event affecting multiple airports in Gauteng Province, South Africa. In completing the lesson, the learner will assess the state of the atmosphere, develop a nowcast, monitor conditions, and update/create appropriate nowcast products for aviation stakeholders.
Permalink![]()
![]()
![]()
IOM Report, 111. Survey on the Surface, Climate and Upper-air Observations and Quality Management in RA II (Asia)
This publication reports on the results of a survey on the surface, climate and upper-air observations and quality management in Regional Association II (Asia). The survey was conducted as one of the activities for the Pilot Project to Enhance the Availability and Quality Management Support for National Meteorological and Hydrological Services in Surface, Climate and Upper-air Observations, established during the 14th Session of Regional Association II (Asia), held in Tashkent, Uzbekistan in December 2008
Permalink![]()
![]()
![]()
IOM Report, 110. Experience of the Japan Meteorological Agency with the Operation of Wind Profilers
This publication discusses the Japanese Meteorological Agency’s (JMA) operational experience with Doppler mode radar wind profilers in Japan, to provide guidance to other WMO Members planning to implement wind profiler networks.
PermalinkPermalink![]()
![]()
![]()
Evaluating the effects of microphysical complexity in idealised simulations of trade wind cumulus using the Factorial Method
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 3. Dearden C.; Connolly P.J.; Choularton T.W.; et al. - Copernicus GmbH, 2011The effect of microphysical and environmental factors on the development of precipitation in warm idealised cloud is explored using a kinematic modelling framework. A simple one-dimensional column model is used to drive a suite of microphysics schemes including a flexible multi-moment bulk scheme (including both single and dual moment cloud liquid water) and a state-of-the-art bin-resolved scheme with explicit treatments of liquid and aerosol. The Factorial Method is employed to quantify and compare the sensitivities of each scheme under a set of controlled conditions, in order to isolate the ...
Permalink