Topics


![]()
![]()
Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 7. Miyazaki Y.; Kawamura K.; Jung J.; et al. - Copernicus GmbH, 2011Marine aerosol samples were collected over the western North Pacific along the latitudinal transect from 44° N to 10° N in late summer 2008 for measurements of organic nitrogen (ON) and organic carbon (OC) as well as isotopic ratios of total nitrogen (TN) and total carbon (TC). Increased concentrations of methanesulfonic acid (MSA) and diethylammonium (DEA+) at 40–44° N and subtropical regions (10–20° N) together with averaged satellite chlorophyll-a data and 5-day back trajectories suggest a significant influence of marine biological activities on aerosols in these regions. ON exhibited incre ...
[article]Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific
![]()
![]()
Available online: http://dx.doi.org/10.5194/acp-11-3037-2011
Y. Miyazaki ; K. Kawamura ; J. Jung ; H. Furutani ; M. Uematsu
in Atmospheric Chemistry and Physics (ACP) > Vol. 11. N° 7 [04/01/2011] . - p.3037-3049Marine aerosol samples were collected over the western North Pacific along the latitudinal transect from 44° N to 10° N in late summer 2008 for measurements of organic nitrogen (ON) and organic carbon (OC) as well as isotopic ratios of total nitrogen (TN) and total carbon (TC). Increased concentrations of methanesulfonic acid (MSA) and diethylammonium (DEA+) at 40–44° N and subtropical regions (10–20° N) together with averaged satellite chlorophyll-a data and 5-day back trajectories suggest a significant influence of marine biological activities on aerosols in these regions. ON exhibited increased concentrations up to 260 ngN m−3 in these marine biologically influenced aerosols. Water-insoluble organic nitrogen (WION) was found to be the most abundant nitrogen in the aerosols, accounting for 55 ± 16% of total aerosol nitrogen. In particular, the average WION/ON ratio was as high as 0.93 ± 0.07 at 40–44° N. These results suggest that marine biological sources significantly contributed to ON, a majority of which is composed of water-insoluble fractions in the study region. Analysis of the stable carbon isotopic ratios (δ13C) indicated that, on average, marine-derived carbon accounted for ~88 ± 12% of total carbon in the aerosols. In addition, the δ13C showed higher values (from −22 to −20‰) when ON/OC ratios increased from 0.15 to 0.35 in marine biologically influenced aerosols. These results clearly show that organic nitrogen is enriched in organic aerosols originated from an oceanic region with high biological productivity, indicating a preferential transfer of nitrogen-containing organic compounds from the sea surface to the marine atmosphere. Both WION concentrations and WION/water-insoluble organic carbon (WIOC) ratios tended to increase with increasing local wind speeds, indicating that sea-to-air emissions of ON via sea spray contribute significantly to the marine organic aerosols over the study region.
Language(s): English
Format: Digital (Free)Tags: Aerosols ; Nitrogen ; Ocean-atmosphere interaction ; Observations ; Pacific Ocean ; Region V - South-West Pacific
Add tag
[article]No review, please log in to add yours !
![]()
![]()
Atmospheric degradation of 3-methylfuran: kinetic and products study
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 7. Tapia A.; Villanueva F.; Salgado M.S.; et al. - Copernicus GmbH, 2011A study of the kinetics and products obtained from the reactions of 3-methylfuran with the main atmospheric oxidants has been performed. The rate coefficients for the gas-phase reaction of 3-methylfuran with OH and NO3 radicals have been determined at room temperature and atmospheric pressure (air and N2 as bath gases), using a relative method with different experimental techniques. The rate coefficients obtained for these reactions were (in units cm3 molecule−1 s−1) kOH = (1.13 ± 0.22) × 10−10 and kNO3 = (1.26 ± 0.18) × 10−11. Products from the reaction of 3-methylfuran with OH, NO3 and Cl at ...
[article]
![]()
Available online: http://dx.doi.org/10.5194/acp-11-3227-2011
A. Tapia ; F. Villanueva ; M.S. Salgado ; B. Cabañas ; E. Martínez ; P. Martín
in Atmospheric Chemistry and Physics (ACP) > Vol. 11. N° 7 [04/01/2011] . - p.3227-3241A study of the kinetics and products obtained from the reactions of 3-methylfuran with the main atmospheric oxidants has been performed. The rate coefficients for the gas-phase reaction of 3-methylfuran with OH and NO3 radicals have been determined at room temperature and atmospheric pressure (air and N2 as bath gases), using a relative method with different experimental techniques. The rate coefficients obtained for these reactions were (in units cm3 molecule−1 s−1) kOH = (1.13 ± 0.22) × 10−10 and kNO3 = (1.26 ± 0.18) × 10−11. Products from the reaction of 3-methylfuran with OH, NO3 and Cl atoms in the absence and in the presence of NO have also been determined. The main reaction products obtained were chlorinated methylfuranones and hydroxy-methylfuranones in the reaction of 3-methylfuran with Cl atoms, 2-methylbutenedial, 3-methyl-2,5-furanodione and hydroxy-methylfuranones in the reaction of 3-methylfuran with OH and NO3 radicals and also nitrated compounds in the reaction with NO3 radicals. The results indicate that, in all cases, the main reaction path is the addition to the double bond of the aromatic ring followed by ring opening in the case of OH and NO3 radicals. The formation of 3-furaldehyde and hydroxy-methylfuranones (in the reactions of 3-methylfuran with Cl atoms and NO3 radicals) confirmed the H-atom abstraction from the methyl group and from the aromatic ring, respectively. This study represents the first product determination for Cl atoms and NO3 radicals in reactions with 3-methylfuran. The reaction mechanisms and atmospheric implications of the reactions under consideration are also discussed.
Language(s): English
Format: Digital (Free)Tags: Aerosols ; Atmosphere ; Environmental degradation ; Research
Add tag
[article]No review, please log in to add yours !
![]()
![]()
Saharan and Asian dust: similarities and differences determined by CALIPSO, AERONET, and a coupled climate-aerosol microphysical model
This study compares the properties of atmospheric dust from the Saharan deserts and the Asian deserts using data from CALIPSO and AERONET during 2006 and 2007 along with simulations using a coupled climate-microphysical sectional model. Saharan deserts are largely south of 30° N, while Asian ones are primarily north of 30° N, hence they experience different meteorological regimes. Saharan dust lifting occurs all year long, primarily due to subtropical weather systems. However, Asian dust is lifted mostly in spring when mid-latitude frontal systems lead to high winds. Rainfall is more abundant ...
[article]Saharan and Asian dust: similarities and differences determined by CALIPSO, AERONET, and a coupled climate-aerosol microphysical model
![]()
![]()
Available online: http://dx.doi.org/10.5194/acp-11-3263-2011
in Atmospheric Chemistry and Physics (ACP) > Vol. 11. N° 7 [04/01/2011] . - p.3263-3280This study compares the properties of atmospheric dust from the Saharan deserts and the Asian deserts using data from CALIPSO and AERONET during 2006 and 2007 along with simulations using a coupled climate-microphysical sectional model. Saharan deserts are largely south of 30° N, while Asian ones are primarily north of 30° N, hence they experience different meteorological regimes. Saharan dust lifting occurs all year long, primarily due to subtropical weather systems. However, Asian dust is lifted mostly in spring when mid-latitude frontal systems lead to high winds. Rainfall is more abundant over Asia during the dust lifting events, leading to greater local dust removal than over the Sahara. However, most dust removal is due to sedimentation. Despite the different meteorological regimes, the same dust lifting schemes work in models for Asian and Saharan dust. The magnitudes of dust lifted in Africa and Asia differ significantly over the year. In our model the yearly horizontal dust flux just downwind of the African dust source is about 1088 Tg (10° S–40° N, 10° W) and from the Asian dust source it is about 355 Tg (25° N–55° N, 105° E) in 2007, which is comparable to previous studies. We find the difference in dust flux is mainly due to the larger area over which dust is lifted in Africa than Asia. However, Africa also has stronger winds in some seasons. Once lifted, the Saharan dust layers generally move toward the west and descend in altitude from about 7 km to the surface over several days in the cases studied. Asian dust often has multiple layers (two layers in the cases studied) during transport largely to the east. One layer stays well above boundary layer during transport and shows little descent, while the other, lower, layer descends with time. This observation contrasts with studies suggesting the descent of Saharan dust is due to sedimentation of the particles, and suggests instead it is dominated by meteorology. We find the size distributions of Asian and African dust are similar when the dust is lifted, but the mode size can differ and secondary size modes can develop probably due to differences in vertical wind velocities during transport. The single scattering albedo of African and Asian dust does differ, due primarily to the imaginary parts of the refractive indexes being different, which in turn is likely due to different dust composition. This study is a step towards a global understanding of dust and its properties.
Language(s): English
Format: Digital (Free)Tags: Aerosols ; Climate model ; Atmospheric circulation ; Climate ; Modelling ; Dust plume ; Region II - Asia ; Sahara
Add tag
[article]No review, please log in to add yours !
![]()
![]()
Analysis on the impact of aerosol optical depth on surface solar radiation in the Shanghai megacity, China
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 7. Xu J.; Li C.; Shi H.; et al. - Copernicus GmbH, 2011This study investigated the decadal variation of the direct surface solar radiation (DiSR) and the diffuse surface solar radiation (DfSR) during 1961–2008 in the Shanghai megacity as well as their relationships to Aerosol Optical Depth (AOD) under clear-sky conditions. Three successive periods with unique features of long term variation of DiSR were identified for both clear-sky and all-sky conditions: a "dimming" period from the late 1960s to the mid 1980s, a "stabilization"/"slight brightening" period from the mid 1980s to the mid 1990s, and a "renewed dimming" period thereafter. During the ...
[article]Analysis on the impact of aerosol optical depth on surface solar radiation in the Shanghai megacity, China
![]()
![]()
Available online: http://dx.doi.org/10.5194/acp-11-3281-2011
in Atmospheric Chemistry and Physics (ACP) > Vol. 11. N° 7 [04/01/2011] . - p.3281-3289This study investigated the decadal variation of the direct surface solar radiation (DiSR) and the diffuse surface solar radiation (DfSR) during 1961–2008 in the Shanghai megacity as well as their relationships to Aerosol Optical Depth (AOD) under clear-sky conditions. Three successive periods with unique features of long term variation of DiSR were identified for both clear-sky and all-sky conditions: a "dimming" period from the late 1960s to the mid 1980s, a "stabilization"/"slight brightening" period from the mid 1980s to the mid 1990s, and a "renewed dimming" period thereafter. During the two dimming periods of DiSR, DfSR brightened significantly under clear-sky conditions, indicating that change in atmospheric transparency resulting from aerosol emission has an important role on decadal variation of surface solar radiation (SSR) over this area. The analysis on the relationship between the Moderate-resolution Imaging Spectroradiometer (MODIS) retrieved AOD and the corresponding hourly measurements of DiSR and DfSR under clear-sky conditions clearly revealed that AOD is significantly correlated and anti-correlated with DfSR and DiSR, respectively, both above 99% confidence in all seasons, indicating the great impact of aerosols on SSR through absorption and/or scattering in the atmosphere. In addition, both AOD and the corresponding DiSR and DfSR measured during the satellite passage over Shanghai show obvious weekly cycles. On weekends, AOD is lower than the weekly average, corresponding to higher DiSR and lower DfSR, while the opposite pattern was true for weekdays. Less AOD on weekends due to the reduction of transportation and industrial activities results in enhancement of atmospheric transparency under cloud free conditions so as to increase DiSR and decrease DfSR simultaneously. Results show that aerosol loading from the anthropogenic emissions is an important modulator for the long term variation of SSR in Shanghai.
Language(s): English
Format: Digital (Free)Tags: Aerosols ; Impact studies ; Urban zone ; Solar radiation ; Research ; China
Add tag
[article]No review, please log in to add yours !
![]()
![]()
Impact of model grid spacing on regional- and urban- scale air quality predictions of organic aerosol
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 7. Stroud C.A.; Makar P.A.; Moran M.D.; et al. - Copernicus GmbH, 2011Regional-scale chemical transport model predictions of urban organic aerosol to date tend to be biased low relative to observations, a limitation with important implications for applying such models to human exposure health studies. We used a nested version of Environment Canada's AURAMS model (42- to- 15- to- 2.5-km nested grid spacing) to predict organic aerosol concentrations for a temporal and spatial domain corresponding to the Border Air Quality and Meteorology Study (BAQS-Met), an air-quality field study that took place in the southern Great Lakes region in the summer of 2007. The use o ...
[article]Impact of model grid spacing on regional- and urban- scale air quality predictions of organic aerosol
![]()
![]()
Available online: http://dx.doi.org/10.5194/acp-11-3107-2011
C.A. Stroud ; P.A. Makar ; M.D. Moran ; W. Gong ; S. Gong ; J. Zhang ; K. Hayden ; C. Mihele ; J.R. Brook ; J.P.D. Abbatt ; J.G. Slowik
in Atmospheric Chemistry and Physics (ACP) > Vol. 11. N° 7 [04/01/2011] . - p.3107-3118Regional-scale chemical transport model predictions of urban organic aerosol to date tend to be biased low relative to observations, a limitation with important implications for applying such models to human exposure health studies. We used a nested version of Environment Canada's AURAMS model (42- to- 15- to- 2.5-km nested grid spacing) to predict organic aerosol concentrations for a temporal and spatial domain corresponding to the Border Air Quality and Meteorology Study (BAQS-Met), an air-quality field study that took place in the southern Great Lakes region in the summer of 2007. The use of three different horizontal grid spacings allowed the influence of this parameter to be examined. A domain-wide average for the 2.5-km domain and a matching 15-km subdomain yielded very similar organic aerosol averages (4.8 vs. 4.3 μg m−3, respectively). On regional scales, secondary organic aerosol dominated the organic aerosol composition and was adequately resolved by the 15-km model simulation. However, the shape of the organic aerosol concentration histogram for the Windsor urban station improved for the 2.5-km simulation relative to those from the 42- and 15-km simulations. The model histograms for the Bear Creek and Harrow rural stations were also improved in the high concentration "tail" region. As well the highest-resolution model results captured the midday 4 July organic-aerosol plume at Bear Creek with very good temporal correlation. These results suggest that accurate simulation of urban and large industrial plumes in the Great Lakes region requires the use of a high-resolution model in order to represent urban primary organic aerosol emissions, urban VOC emissions, and the secondary organic aerosol production rates properly. The positive feedback between the secondary organic aerosol production rate and existing organic mass concentration is also represented more accurately with the highest-resolution model. Not being able to capture these finer-scale features may partly explain the consistent negative bias reported in the literature when urban-scale organic aerosol evaluations are made using coarser-scale chemical transport models.
Language(s): English
Format: Digital (Free)Tags: Aerosols ; Methodology ; Urban zone ; Weather forecasting ; Air quality ; Research
Add tag
[article]No review, please log in to add yours !
![]()
![]()
![]()
New particle formation events in semi-clean South African savannah
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 7. Vakkari V.; Laakso H.; Kulmala M.; et al. - Copernicus GmbH, 2011This study is based on 18 months (20 July 2006–5 February 2008) of continuous measurements of aerosol particle size distributions, air ion size distributions, trace gas concentrations and basic meteorology in a semi-clean savannah environment in Republic of South Africa. New particle formation and growth was observed on 69% of the days and bursts of non-growing ions/sub-10 nm particles on additional 14% of the days. This new particle formation frequency is the highest reported from boundary layer so far. Also the new particle formation and growth rates were among the highest reported in the li ...
Permalink![]()
![]()
![]()
The 2009–2010 Arctic polar stratospheric cloud season: a CALIPSO perspective
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 5. Pitts M.C.; Poole L.R.; Dörnbrack A.; et al. - Copernicus GmbH, 2011Spaceborne lidar measurements from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) are used to provide a vortex-wide perspective of the 2009–2010 Arctic PSC (polar stratospheric cloud) season to complement more focused measurements from the European Union RECONCILE (reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) field campaign. The 2009–2010 Arctic winter was unusually cold at stratospheric levels from mid-December 2009 until the end of January 2010, and was one of only ...
Permalink![]()
![]()
![]()
Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 5. El Haddad I.; Marchand N.; Temime-Roussel B.; et al. - Copernicus GmbH, 2011A comprehensive aerosol characterization was conducted at Marseille during summer, including organic (OC) and elemental carbon (EC), major ionic species, radiocarbon (14C), water-soluble OC and HULIS (HUmic LIke Substances), elemental composition and primary and secondary organic markers. This paper is the second paper of a two-part series that uses this dataset to investigate the sources of Organic Aerosol (OA). While the first paper investigates the primary sources (El Haddad et al., 2010), this second paper focuses on the secondary fraction of the organic aerosol.
Permalink![]()
![]()
![]()
Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 5. El Haddad I.; Marchand N.; Wortham H.; et al. - Copernicus GmbH, 2011Marseille, the most important port of the Mediterranean Sea, represents a challenging case study for source apportionment exercises, combining an active photochemistry and multiple emission sources, including fugitive emissions from industrial sources and shipping. This paper presents a Chemical Mass Balance (CMB) approach based on organic markers and metals to apportion the primary sources of organic aerosol in Marseille, with a special focus on industrial emissions. Overall, the CMB model accounts for the major primary anthropogenic sources including motor vehicles, biomass burning and the a ...
Permalink![]()
![]()
![]()
Three-year ground based measurements of aerosol optical depth over the Eastern Mediterranean: the urban environment of Athens
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 5. Gerasopoulos E.; Amiridis V.; Kazadzis S.; et al. - Copernicus GmbH, 2011Three years (2006–2008) of ground-based observations of the Aerosol Optical Depth (AOD) in the urban environment of Athens, in the Eastern Mediterranean, are analysed in this work. Measurements were acquired with a Multi-Filter Rotating Shadowband Radiometer at five wavelengths. The daily average AOD at 500 nm is 0.23, and the mean Ångström coefficient calculated between 415 and 867 nm is 1.41. The annual variability of AOD has a spring maximum dominated by coarse dust particles from the Sahara (AOD 0.34–0.42), while the diurnal pattern is typical for urban sites, with AOD steadily increasing ...
Permalink![]()
![]()
![]()
Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 5. Barlow J.F.; Dunbar T.M.; Nemitz E.G.; et al. - Copernicus GmbH, 2011Urban boundary layers (UBLs) can be highly complex due to the heterogeneous roughness and heating of the surface, particularly at night. Due to a general lack of observations, it is not clear whether canonical models of boundary layer mixing are appropriate in modelling air quality in urban areas. This paper reports Doppler lidar observations of turbulence profiles in the centre of London, UK, as part of the second REPARTEE campaign in autumn 2007. Lidar-measured standard deviation of vertical velocity averaged over 30 min intervals generally compared well with in situ sonic anemometer measure ...
Permalink![]()
![]()
![]()
Dependence of aerosol-precipitation interactions on humidity in a multiple-cloud system
This study examines the dependence of aerosol-precipitation interactions on environmental humidity in a mesoscale cloud ensemble (MCE) which is composed of convective and stratiform clouds. The author found that increases in aerosol concentration enhance evaporative cooling, which raises not only the intensity of vorticity and entrainment but also that of downdrafts and low-level convergence. The increase in vorticity tends to suppress precipitation. The increase in low-level convergence tends to enhance precipitation by generating more secondary clouds in a muptiple-cloud system simulated her ...
Permalink![]()
![]()
![]()
New cloud chamber experiments on the heterogeneous ice nucleation ability of oxalic acid in the immersion mode
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 5. Wagner R.; Möhler O.; Saathoff H.; et al. - Copernicus GmbH, 2011The heterogeneous ice nucleation ability of oxalic acid in the immersion mode has been investigated by controlled expansion cooling runs with airborne, ternary solution droplets composed of, (i), sodium chloride, oxalic acid, and water (NaCl/OA/H2O) and, (ii), sulphuric acid, oxalic acid, and water (H2SO4/OA/H2O). Polydisperse aerosol populations with median diameters ranging from 0.5–0.7 μm and varying solute concentrations were prepared. The expansion experiments were conducted in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at initial temperatures of 244 and 2 ...
Permalink![]()
![]()
![]()
Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 3. Brock C.A.; Cozic J.; Bahreini R.; et al. - Copernicus GmbH, 2011We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea ...
Permalink![]()
![]()
![]()
HFC-152a and HFC-134a emission estimates and characterization of CFCs, CFC replacements, and other halogenated solvents measured during the 2008 ARCTAS campaign (CARB phase) over the South Coast Air Basin of California
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 3. Barletta B.; Nissenson P.; Meinardi S.; et al. - Copernicus GmbH, 2011This work presents results from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) study. Whole air samples were obtained on board research flights that flew over California during June 2008 and analyzed for selected volatile organic compounds, including several halogenated species. Samples collected over the South Coast Air Basin of California (SoCAB), which includes much of Los Angeles (LA) County, were compared with samples from inflow air masses over the Pacific Ocean. The levels of many halocarbon species were enhanced significantly over t ...
Permalink