Topics


![]()
![]()
Forecasting Sensible Weather from Water Vapour Imagery
Forecaster nowcasting at the synoptic scale is rapidly being replaced by the numerical weather prediction models. However, there are plenty of opportunities for you as a forecaster to improve on those forecasts with simple comparisons of water vapour hand analyses and surface hand analyses. The goal of this lesson is to improve your skills in water vapour and surface analyses to evaluate the three-dimensionality of the atmosphere and thus forecast the sensible weather better. This is the capstone for the entire Satellite Interpretation distance learning course.
Available online: https://www.meted.ucar.edu/training_module.php?id=1124
Published by: The University Corporation for Atmospheric Research ; 2016
Forecaster nowcasting at the synoptic scale is rapidly being replaced by the numerical weather prediction models. However, there are plenty of opportunities for you as a forecaster to improve on those forecasts with simple comparisons of water vapour hand analyses and surface hand analyses. The goal of this lesson is to improve your skills in water vapour and surface analyses to evaluate the three-dimensionality of the atmosphere and thus forecast the sensible weather better. This is the capstone for the entire Satellite Interpretation distance learning course.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Satellite Foundational Course for GOES-R: SatFC-G (SHyMet Full Course Access)
The Satellite Foundational Course for GOES-R (SatFC-G) is a series of nearly 40 lessons designed specifically for National Weather Service (NWS) forecasters and decision makers to prepare for the U.S.’ next-generation geostationary environmental satellites. The course is intended to help learners develop or improve their understanding of the capabilities, value, and anticipated benefits from the GOES-R suite of instruments. These instruments and imagery offer improved monitoring of meteorological, environmental, climatological, and space weather phenomena and related hazards. The course will a ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1301
Published by: The University Corporation for Atmospheric Research ; 2016
The Satellite Foundational Course for GOES-R (SatFC-G) is a series of nearly 40 lessons designed specifically for National Weather Service (NWS) forecasters and decision makers to prepare for the U.S.’ next-generation geostationary environmental satellites. The course is intended to help learners develop or improve their understanding of the capabilities, value, and anticipated benefits from the GOES-R suite of instruments. These instruments and imagery offer improved monitoring of meteorological, environmental, climatological, and space weather phenomena and related hazards. The course will also help prepare the learner for future exploration and use of GOES-R products in meteorological analysis and forecasting, and in other disciplines that involve environmental monitoring and prediction. The lessons are accessible through the VISIT/SHyMet website. [Note that NOAA personnel should access the lessons through the Commerce Learning Center (CLC).] Training developers include VISIT/SHyMet staff from the Cooperative Institutes at CIMSS and CIRA; COMET; the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS); the Short-term Prediction Research and Transition Center (SPoRT); and the NWS Office of the Chief Learning Officer (OCLO).
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Satellite ; Weather forecasting ; Mesoscale ; Data assimilation ; Convection ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
SatFC-G: Tropical to Extratropical Transition
This lesson uses water vapor satellite imagery from Himawari-8 to describe the typical extratropical transition of a tropical cyclone. The Himawari-8 imager previews comparable capabilities coming online with the GOES-R ABI imager. The lesson also provides a brief overview of subtropical cyclones and their transition to tropical cyclones. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Available online: https://www.meted.ucar.edu/training_module.php?id=1240
Published by: The University Corporation for Atmospheric Research ; 2016
This lesson uses water vapor satellite imagery from Himawari-8 to describe the typical extratropical transition of a tropical cyclone. The Himawari-8 imager previews comparable capabilities coming online with the GOES-R ABI imager. The lesson also provides a brief overview of subtropical cyclones and their transition to tropical cyclones. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Tropical cyclone ; Weather forecasting ; Typhoon ; Lesson/ Tutorial ; Pacific Ocean ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
SatFC-G: Impact of Satellite Observations on NWP
This lesson covers how satellite data inform numerical weather prediction models. From a basic overview of how satellite data is assimilated to how a new instrument's data might get into a model. This lesson is a part of the NWS Satellite Foundation GOES-R Course. More in-depth discussions and a quiz on the impacts of satellite observations on NWP can be found in the COMET lesson, How Satellite Observations Impact NWP.
Available online: https://www.meted.ucar.edu/training_module.php?id=1258
Published by: The University Corporation for Atmospheric Research ; 2016
This lesson covers how satellite data inform numerical weather prediction models. From a basic overview of how satellite data is assimilated to how a new instrument's data might get into a model. This lesson is a part of the NWS Satellite Foundation GOES-R Course. More in-depth discussions and a quiz on the impacts of satellite observations on NWP can be found in the COMET lesson, How Satellite Observations Impact NWP.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Data assimilation ; Forecast error ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
HiresW HREF Upgrade
This 20-minute lesson presents upgraded versions of the two NWP models used as High Resolution Window (HiresW), the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) and the Non-Hydrostatic Multiscale Model on the B-grid (NMMB). Domains include the CONtinental US (CONUS), Alaska, Hawaii, Guam, and Puerto Rico. The CONUS runs of the NMMB and WRF-ARW became part of a new High Resolution Ensemble Forecast (HREF) system in 2015, the first of its kind produced at the National Centers for Environmental Prediction. To familiarize the operational forecaster with the HREF, products from ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1215
Published by: The University Corporation for Atmospheric Research ; 2016
This 20-minute lesson presents upgraded versions of the two NWP models used as High Resolution Window (HiresW), the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) and the Non-Hydrostatic Multiscale Model on the B-grid (NMMB). Domains include the CONtinental US (CONUS), Alaska, Hawaii, Guam, and Puerto Rico. The CONUS runs of the NMMB and WRF-ARW became part of a new High Resolution Ensemble Forecast (HREF) system in 2015, the first of its kind produced at the National Centers for Environmental Prediction. To familiarize the operational forecaster with the HREF, products from a surrogate ensemble system (the Storm Scale Ensemble of Opportunity from NCEP's Storm Prediction Center) with a similar configuration are used in a 2014 severe weather case study from upstate New York.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
SatFC-G: Introduction to the GLM
This lesson describes the need for real-time lightning information and the capabilities of the Geostationary Lightning Mapper (GLM), which will fly on the next-generation GOES-R satellites as the first operational lightning detector in geostationary orbit. This lesson is a part of the NWS Satellite Foundation GOES-R Course. More in-depth discussions and a quiz on the lightning flash cycle and lightning applications can be found in the COMET lesson, GOES-R GLM: Introduction to the Geostationary Lightning Mapper.
Permalink![]()
![]()
![]()
Verification Methods in the NWS National Blend of Global Models
This lesson introduces learners to the methods used in verifying the various weather element forecasts included in Version 1.0 of the U.S. National Weather Service (NWS) National Blend of global Models (NBM). This Level 2 lesson is intended for forecasters and users of NWS forecast products; some prior knowledge of numerical weather prediction and statistics is useful. Learners will be introduced to the analysis of record used to verify the NBM. Learners will also explore single event, grid-to-observation, and grid-to-grid verification methods, as well as how to interpret the results using the ...
Permalink![]()
![]()
![]()
Statistical Methods in the NWS National Blend of Global Models
This lesson introduces users to the statistics used in generating the various weather element forecasts included in Version 1.0 of the U.S. National Weather Service (NWS) National Blend of global Models (NBM). This Level 3 lesson is intended for forecasters and users of NWS forecast products; some prior knowledge of numerical weather prediction and statistics is useful. Learners will be introduced to the analysis of record used to calibrate the NBM’s bias and error estimates. Learners will also explore the downscaling, bias correction, and weighting procedures applied to the model products, an ...
Permalink![]()
![]()
![]()
Predicting Convective Cessation for Aviation Forecasters
This module introduces aviation forecasters to a conceptual framework for analyzing, diagnosing and predicting convective cessation and resulting conditions near airports. Users will first learn about five main environments with respect to convection, and three patterns in which these environments are commonly arranged. Next, users are immersed into an adjustable-time case simulator to practice applying the convective environment frameworks to their forecast process, while periodically amending TAFs and responding to warning, storm report and caller interruptions. Finally, a case summary ties ...
Permalink![]()
![]()
![]()
SatFC-G: IR Bands, Excluding Water Vapor
This lesson introduces seven of the ten infrared imager bands on the GOES R-U ABI (Advanced Baseline Imager). It examines the spectral characteristics of each band to facilitate a better understanding of band selection and what each band observes, and to shed light on some of the many potential applications. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Permalink![]()
![]()
![]()
The Science of Radio Occultation and the COSMIC Mission
The lesson provides an overview of radio occultation and its contributions to our understanding of Earth's atmosphere as demonstrated by the COSMIC mission launched in 2006. The lesson is divided into three chapters: Chapter 1 describes the science of radio occultation and how atmospheric profiles are obtained. Chapter 2 focuses on the benefits of radio occultation and COSMIC observations for numerous applications related to meteorology, climate, and space weather. Chapter 3 describes the COSMIC-2/FORMOSAT-7 mission and its expected improvements to further inform meteorology, climate, and iono ...
Permalink![]()
![]()
![]()
Communicating Forecast Uncertainty
This scenario-based lesson introduces the topic of communicating forecast uncertainty to decision-makers, such as emergency managers, related industry professionals, the public, and other end-users. In a case that spans the lesson, learners begin by developing a forecast discussion using deterministic data, refine it with probabilistic ensemble data, and evaluate how well it conveys uncertainty information. Then they assume several end-user roles, assessing how well the forecast discussion addresses their needs. From there, important research findings on communicating uncertainty are discussed ...
Permalink![]()
![]()
![]()
SatFC-G: Visible and Near-IR Bands
This lesson introduces you to the two visible and one of the near-infrared imager bands on the GOES R-U ABI (Advanced Baseline Imager), focusing on their spectral characteristics and how they affect what each band observes. Also included is a brief discussion of the customization of visible enhancements as an important consideration for improving the depiction of various features of interest. This lesson is a part of the NWS Satellite Foundation GOES-R Course.
Permalink![]()
![]()
![]()
The Importance of Accurate Coastal Elevation and Shoreline Data
Produced in collaboration between NOAA’s National Geodetic Survey (NGS) and The COMET Program, this video explains the role of topo-bathy lidar products in NOAA’s mapping and charting program, and how these products provide a critical dataset for coastal resilience, coastal intelligence, and place-based conservation. Federal, state and local decision-makers, coastal zone managers, community planners as well as general and scientific users of mapping products will find this 4-minute video helpful for understanding the benefits of coastal elevation data produced by NGS. This resource is hosted o ...
Permalink![]()
![]()
![]()
Regional Association IV (North America, Central America and the Caribbean) - Seventeenth session: abridged final report with resolutions
Permalink