Topics


![]()
![]()
Basic Satellite Imagery Interpretation
This lesson teaches the basics of satellite image interpretation to forecasters, meteorology students, and other interested learners, with an emphasis on the African region. It begins by briefly describing visible, infrared, and water vapour channels, as well as RGBs and derived products. From there, it teaches learners how to interpret clouds and surface features using various channels and products. This sets the stage for the final section, where learners practice identifying features using assorted imagery and products. The lesson uses Meteosat Second Generation imagery over Africa and, to ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1316
Published by: The University Corporation for Atmospheric Research ; 2017
This lesson teaches the basics of satellite image interpretation to forecasters, meteorology students, and other interested learners, with an emphasis on the African region. It begins by briefly describing visible, infrared, and water vapour channels, as well as RGBs and derived products. From there, it teaches learners how to interpret clouds and surface features using various channels and products. This sets the stage for the final section, where learners practice identifying features using assorted imagery and products. The lesson uses Meteosat Second Generation imagery over Africa and, to a lesser extent, Europe. Given the similarities in channels between satellites, the lesson should also appeal to a broader, international audience. This lesson is being designed to support EUMETSAT training courses, such as the online Satellite Application Courses run by EUMETSAT and the African training centers.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Satellite ; Weather forecasting ; Lesson/ Tutorial ; Water vapour ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Gravity for Geodesy II: Applications
Gravity is an important part of geodesy, with implications for height measurements and many other applications. In this module, we explore the concept of equipotential surfaces and relate them to gravity. Then we discuss geodetic applications that rely on accurate gravity measurements, including leveling surveys and floodplain mapping. We introduce a special surface based on gravity, called the gravimetric geoid, and explain why we want to use it as a reference datum. We discuss how to measure Earth’s gravity and introduce you to the National Geodetic Survey’s GRAV-D project, including how and ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1318
Published by: The University Corporation for Atmospheric Research ; 2017
Gravity is an important part of geodesy, with implications for height measurements and many other applications. In this module, we explore the concept of equipotential surfaces and relate them to gravity. Then we discuss geodetic applications that rely on accurate gravity measurements, including leveling surveys and floodplain mapping. We introduce a special surface based on gravity, called the gravimetric geoid, and explain why we want to use it as a reference datum. We discuss how to measure Earth’s gravity and introduce you to the National Geodetic Survey’s GRAV-D project, including how and why the U.S. and a number of other countries plan to use a gravity-based vertical datum.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Satellite ; Lesson/ Tutorial ; Geodesy
Add tag
No review, please log in to add yours !
![]()
![]()
Training Tutorials and Datasets for GOES-R/JPSS New Generation Satellite Aerosol Products
These free training resources include video tutorials as well as case studies with accompanying data and imagery. The resources introduce the new generation of aerosol products available from the JPSS series of polar-orbiting satellites (SNPP/VIIRS) and the GOES-R series of geostationary satellites (GOES-16/ABI). Users will learn about the types of satellite aerosol products available, including aerosol optical depth/thickness (AOD/AOT) and aerosol detection (smoke/dust masks), as well as complimentary satellite products, such as fire radiative power (FRP) hotspots and visible color imagery (R ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1378
Published by: The University Corporation for Atmospheric Research ; 2017
These free training resources include video tutorials as well as case studies with accompanying data and imagery. The resources introduce the new generation of aerosol products available from the JPSS series of polar-orbiting satellites (SNPP/VIIRS) and the GOES-R series of geostationary satellites (GOES-16/ABI). Users will learn about the types of satellite aerosol products available, including aerosol optical depth/thickness (AOD/AOT) and aerosol detection (smoke/dust masks), as well as complimentary satellite products, such as fire radiative power (FRP) hotspots and visible color imagery (RGBs). The emphasis is on operational applications for air quality, particularly fires/smoke and haze. The satellite aerosol product training resources are developed and maintained by the NOAA Satellite Air Quality Proving Ground (AQPG) project and are not produced, owned or hosted by UCAR/COMET.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Satellite ; Weather forecasting ; Air quality ; Remote sensing ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
Statistical Methods in the NWS National Blend of Global Models Part 2
This lesson introduces users to the statistics used in generating the various weather element forecasts included in version 2 and 3 of the U.S. National Weather Service (NWS) National Blend of Global Models (NBM). This Level 3 lesson is intended for forecasters and users of NWS forecast products; some prior knowledge of numerical weather prediction and statistics is useful. Learners will be introduced to the analysis of record used to calibrate the NBM’s bias and error estimates. Learners will also explore the bias correction, weighting, and post-processing procedures used to produce the forec ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1299
Published by: The University Corporation for Atmospheric Research ; 2017
This lesson introduces users to the statistics used in generating the various weather element forecasts included in version 2 and 3 of the U.S. National Weather Service (NWS) National Blend of Global Models (NBM). This Level 3 lesson is intended for forecasters and users of NWS forecast products; some prior knowledge of numerical weather prediction and statistics is useful. Learners will be introduced to the analysis of record used to calibrate the NBM’s bias and error estimates. Learners will also explore the bias correction, weighting, and post-processing procedures used to produce the forecasts.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Precipitation ; Numerical weather prediction ; Lesson/ Tutorial ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
COSMIC: Atmospheric Remote Sensing for Weather, Climate, and the Ionosphere
This video provides an introduction to the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), including information about the COSMIC-2 mission. COSMIC uses a technique called radio occultation to profile temperature, water vapor, and ionospheric information within Earth's atmosphere. The high-quality, high-resolution data contribute to improvements in numerical weather prediction, hurricane forecasts, climate studies, and ionospheric analyses. This full video resource covering COSMIC data and science is hosted on COMET's YouTube Channel. A short video highlightin ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1273
Published by: The University Corporation for Atmospheric Research ; 2017
This video provides an introduction to the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), including information about the COSMIC-2 mission. COSMIC uses a technique called radio occultation to profile temperature, water vapor, and ionospheric information within Earth's atmosphere. The high-quality, high-resolution data contribute to improvements in numerical weather prediction, hurricane forecasts, climate studies, and ionospheric analyses. This full video resource covering COSMIC data and science is hosted on COMET's YouTube Channel. A short video highlighting the key aspects of COSMIC-2 is also available.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Climate ; Meteorology ; Climatology ; Weather forecasting ; Hurricane ; Numerical weather prediction ; Ionosphere ; Remote sensing ; Lesson/ Tutorial ; Satellite Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
GOES-R Series Faculty Virtual Course: Geostationary Lightning Mapper
In this webinar recording Scott Rudlosky and Geoffrey Stano discuss and demonstrate the capabilities of the GOES-R/16 Geostationary Lightning Mapper (GLM) in both operational and research applications. You will learn how the GLM, the first lightning mapper in geostationary orbit, differs from land-based lightning detection. The presenters summarize important processes known as lightning events, group, flashes, and lightning jumps and show products that illustrate the location and areal extent of lightning, and its evolution in cloud systems. With this information you should be able to integrat ...
Permalink![]()
![]()
![]()
GOES-R Series Faculty Virtual Course: Severe Storms
In this webinar recording, Michael Bowlan explains how GOES-R/16 can help improve forecasts of severe storms and provide forecasters with real-time information about lightning, flooding potential and other hazards. The high-resolution Advanced Baseline Imager (ABI) data can indicate whether thunderstorm updrafts are gathering strength or weakening, helping aid forecasters in making warning decisions. The ABI can also aid in identifying storms and convective complexes that have stalled or are “training”, which can signal a flood risk and help forecasters issue flood or flash flood warnings soon ...
Permalink![]()
![]()
![]()
GOES-R Series Faculty Virtual Course: Tropical Cyclones
In this webinar recording, Andrea Schumacher demonstrates the GOES-R series' new capabilities for real-time tropical cyclone analysis and monitoring, which will contribute significantly to improved hurricane track and intensity forecasts. The GOES-16 imager will provide dramatic new views of tropical cyclone phenomena, offering vastly improved time and spatial resolution as well as color composite images to enhance cloud bands and other features. This webinar will also explore the role of the Geostationary Lightning Mapper (GLM) in helping identify areas of strong thunderstorms associated with ...
Permalink![]()
![]()
![]()
Instrumentation and Measurement of Atmospheric Temperature
This lesson offers a comprehensive overview of temperature measurement as related to the atmosphere, bodies of water, soils, and other parts of Earth’s surface. The lesson begins by defining temperature and why it is an important property to characterize. It provides details about the properties and characteristics of sensors used for temperature measurements and the advantages and disadvantages of different sensors depending on the application. Lastly, the lesson outlines the methods used for measuring different types of temperature, from soil to the free atmosphere.
Permalink![]()
![]()
![]()
Web-Based Ensemble Tools: Ensemble Situational Awareness Table
The National Weather Service (NWS) Western Region (WR) has developed a Ensemble Situational Awareness Table (ESAT), which uses probabilistic NWP to bring attention to the potential for extreme events, especially in middle-range forecasts. The lesson, which is the first of two on the ESAT, describes the ESAT and how its data can be used to support assessment of extreme weather event forecasts. Additionally, statistical methods, including employment of reanalysis and NWP model climatologies (R-Climate and M-Climate, respectively) are described in reference to the products available in the ESAT.
Permalink![]()
![]()
![]()
GOES-R Series Faculty Virtual Course: Multispectral RGB Composites
In this webinar recording Dr. Emily Berndt and Dr. Michael Folmer discuss the capabilities of the GOES-R/16 Red-Green-Blue (RGB) composites. Multispectral or RGB composites are qualitative, false color images designed to enhance specific features in the atmosphere that are important to forecasters, aviators, mariners, and emergency response officials. RGB composites have been enthusiastically integrated into forecast operations because of their ability to highlight the presence and evolution of important forecast phenomena. This presentation details the development of RGB composites and provid ...
Permalink![]()
![]()
![]()
Using Climatology in Forecasting Convection in West and Central Africa
This case-study lesson provides an opportunity to apply the information in the ASMET lesson “Satellite-Derived Climatology Products for Monitoring Convection Over West and Central Africa” to a case that occurred over West and Central Africa in June 2014. It demonstrates how to integrate climatology information with satellite, global instability indices (GII), and NWP data when convection is forecast to occur.
Permalink![]()
![]()
![]()
GOES-R Series Faculty Virtual Course: Advanced Baseline Imager
In this webinar recording, Tim Schmit demonstrates the improved temporal, spatial, spectral and calibration attributes of the Advanced Baseline Imager (ABI) on the GOES-R series. The main uses for each of the sixteen spectral bands will be covered, using examples from the recently launched GOES-16 ABI. Imagery and data loops for various types of atmospheric phenomena will be presented to illustrate the improved spectral capabilities and higher temporal and spatial resolution of the ABI. This is a recorded webinar presented by an instructor at his home institution. Audio variations may exist.
Permalink![]()
![]()
![]()
Met 101: Basic Weather Processes
This lesson provides an overview of basic weather processes, beginning with how the distribution of incoming solar energy helps to establish Earth’s atmospheric circulations. Learners will gain an understanding of the differences between weather and climate, and how Earth’s winds tend to have dominant patterns determined by region. An introduction to atmospheric stability, clouds, precipitation processes, and thunderstorm characteristics is also included, along with an introduction to weather impacts affecting aviation operations.
Permalink![]()
![]()
![]()
GOES-R Launch Workshop for Broadcast Meteorologists, November 2016
This lesson consists of presentations by nine professionals from NOAA and NASA recorded at the GOES-R Workshop for Broadcast Meteorologists at Kennedy Space Center. The workshop was offered by StormCenter Communications, Inc. in partnership with the COMET Program in conjunction with the November 2016 GOES-R launch. These presentations introduce broadcast meteorologists to the new capabilities of this next-generation weather satellite and cover topics including new instrumentation and data available via the GOES-R series, and how the imagery will improve forecasting. After completing this lesso ...
Permalink