Topics


![]()
![]()
Руководство по климатологической практике
Настоящая публикация предназначена для предоставления руководства и оказания содействия странам — членам Всемирной Метеорологической Организации (ВМО) в развитии национальной деятельности, связанной с климатической информацией и обслуживанием.
Published by: BMO ; 2018 (Издание 2018 г.)
Настоящая публикация предназначена для предоставления руководства и оказания содействия странам — членам Всемирной Метеорологической Организации (ВМО) в развитии национальной деятельности, связанной с климатической информацией и обслуживанием.
Collection(s) and Series: BMO- No. 100
Language(s): Russian; Other Languages: Arabic, Chinese, English, French, Spanish
Format: Digital (Free)ISBN (or other code): 978-92-63-40100-7
Archives access: 1983-[...]Tags: Climate ; Climate services ; Climatology ; Guide ; Methodology ; Competencies for Provision of Climate Services
Add tag
Translation fromNo review, please log in to add yours !
![]()
![]()
Guide sur les compétences
Le Guide veut aider les organismes qui souhaitent élaborer, appliquer ou actualiser des programmes de formation et d’évaluation axées sur les compétences en s’appuyant sur les cadres de l’OMM qui figurent dans le Volume I du Règlement technique (OMM-No 49).
On y trouvera quelques exemples de pratiques définies par les Membres, de sorte que la diffusion de ces connaissances et enseignements facilite le respect des exigences fixées par l’OMM de la meilleure façon qui soit.
Le Guide sera également utile aux commissions techniques et aux équipes d’experts chargées de définir et d’act ...
Published by: OMM ; 2018 (Edition 2018)
Le Guide veut aider les organismes qui souhaitent élaborer, appliquer ou actualiser des programmes de formation et d’évaluation axées sur les compétences en s’appuyant sur les cadres de l’OMM qui figurent dans le Volume I du Règlement technique (OMM-No 49).
On y trouvera quelques exemples de pratiques définies par les Membres, de sorte que la diffusion de ces connaissances et enseignements facilite le respect des exigences fixées par l’OMM de la meilleure façon qui soit.
Le Guide sera également utile aux commissions techniques et aux équipes d’experts chargées de définir et d’actualiser les compétences requises (section 1, partie II), aux centres régionaux de formation professionnelle et autres établissements qui devront adapter leurs plans et cours en fonction des compétences (section 3, partie III) et aux Services météorologiques et hydrologiques nationaux (SMHN) et autres organismes des Membres qui devront utiliser les compétences pour orienter la prestation de services et, en particulier, intégrer celles-ci dans leur système de gestion de la qualité (parties I et III).Collection(s) and Series: OMM- No. 1205
Language(s): French; Other Languages: English, Spanish, Russian, Arabic, Chinese
Format: Digital (Free)ISBN (or other code): 978-92-63-11205-7
Tags: Education and Training Programme (ETRP) ; Guide ; Capacity development ; Training ; Education and Training Providers ; Governance Publications
Add tag
Translation fromNo review, please log in to add yours !
Published by: OMM ; 2018 (édition 2018)
Notes: Autres versions en préparation.
Collection(s) and Series: OMM- No. 100
Language(s): French; Other Languages: English, Russian, Spanish
Format: Digital (Free)ISBN (or other code): 978-92-63-20100-3
Archives access: 1960-[...]Tags: Climate ; Climate services ; Climatology ; Guide ; Methodology ; Competencies for Provision of Climate Services
Add tag
Translation fromNo review, please log in to add yours !
![]()
![]()
Instrumentation and Measurement of Atmospheric Humidity
This lesson provides an overview of the science and techniques related to measuring humidity, or the amount of water vapor, in Earth's atmosphere. After beginning with a review of the units used for humidity, the learner will examine the three main types of hygrometers (material, thermodynamic, and optical) and explore instruments within each of these categories. The lesson provides information about the advantages and limitations of various humidity instruments. The effects of siting, sheltering, and ventilation on humidity measurements are also addressed. The lesson is part of the Instrument ...
Available online: https://www.meted.ucar.edu/training_module.php?id=1421
Published by: The University Corporation for Atmospheric Research ; 2018
This lesson provides an overview of the science and techniques related to measuring humidity, or the amount of water vapor, in Earth's atmosphere. After beginning with a review of the units used for humidity, the learner will examine the three main types of hygrometers (material, thermodynamic, and optical) and explore instruments within each of these categories. The lesson provides information about the advantages and limitations of various humidity instruments. The effects of siting, sheltering, and ventilation on humidity measurements are also addressed. The lesson is part of the Instrumentation and Measurement of Atmospheric Parameters course series.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Atmosphere ; Measure ; Humidity ; Lesson/ Tutorial
Add tag
No review, please log in to add yours !
![]()
![]()
Interpreting and Communicating EPS Guidance: Iberian Heat Wave
This 45-minute lesson briefly introduces learners to the benefits of using probabilistic forecast information to assess the weather and communicate forecast uncertainties. Learners will explore a heat wave event in Spain and practice interpreting EPS forecast products effectively to determine various forecast parameters based on lead-time. Also, learners will decide how to best communicate the potential weather threats and impacts information to local end users.
Available online: https://www.meted.ucar.edu/training_module.php?id=1356
Published by: The University Corporation for Atmospheric Research ; 2018
This 45-minute lesson briefly introduces learners to the benefits of using probabilistic forecast information to assess the weather and communicate forecast uncertainties. Learners will explore a heat wave event in Spain and practice interpreting EPS forecast products effectively to determine various forecast parameters based on lead-time. Also, learners will decide how to best communicate the potential weather threats and impacts information to local end users.
Disclaimer regarding 3rd party resources: WMO endeavours to ensure, but cannot and does not guarantee the accuracy, accessibility, integrity and timeliness of the information available on its website. WMO may make changes to the content of this website at any time without notice.
The responsibility for opinions expressed in articles, publications, studies and other contributions rests solely with their authors, and their posting on this website does not constitute an endorsement by WMO of the opinion expressed therein.
WMO shall not be liable for any damages incurred as a result of the use of its website. Please do not misuse our website.Language(s): English
Format: Digital (Standard Copyright)Tags: Weather forecasting ; Numerical weather prediction ; Heat wave ; Forecast uncertainty ; Lesson/ Tutorial ; Spain ; NWP Skills and Knowledge for Operational Meteorologists
Add tag
No review, please log in to add yours !
![]()
![]()
![]()
Situational Awareness in The Fire Environment
Maintaining situational awareness is a crucial skill in every decision-support situation. Wildland fires that threaten populated areas have the potential to inflict devastating damage to communities and can also threaten the personnel working on the fire. This lesson introduces the Situational Awareness Cycle. Learners practice using it to continuously monitor and adapt their support strategies and decision-support information depending on the rapidly evolving wildfire conditions. The lesson also discusses a range of tools that can be used to build and maintain situational awareness.
Permalink![]()
![]()
![]()
What's New in the National Blend of Models version 3.1
Intended for U.S. National Weather Service forecasters, this short video describes changes to the NWS National Blend of Models when it was updated to v3.1. These changes include: More global, mesoscale, and ensemble components; Increased spatial resolution of some components; New and improved weather elements for aviation, QPF, winter, fire, and marine weather forecasting; Significant wave height for offshore waters and the Great Lakes; Improved bias correction; MOS-like text products; Shortened NBM forecast projections delivered at 19 UTC. For an illustrated transcript, see What’s New in NBM ...
Permalink![]()
![]()
![]()
Location Science Improves Everyday Life
This short video explores some of the ways that location science improves everyday life. It follows two characters, Jane and John, through the course of a typical day. Jane has a smooth trouble-free day fishing with friends, thanks in part to accurate location surveys. John, on the other hand, has an awful day traced to inaccurate surveys and out-of-date maps.
Permalink![]()
![]()
![]()
SatFC-J: The CrIS and ATMS Sounders
This lesson introduces the capabilities of NOAA’s next-generation infrared and microwave sounders, the Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). Both fly on board the Suomi NPP satellite mission and constitute the foundation for NOAA’s operational space-based sounding capability on the next-generation JPSS polar-orbiting satellites. In addition to their complementary sounding duties, CrIS and ATMS provide capabilities and improvements for a variety of environmental products essential to weather forecasting and environmental monitoring. Some of th ...
Permalink![]()
![]()
![]()
Mesoscale Model Components of the National Blend of Models Version 3.0
The National Weather Service National Blend of Models (NBM) was updated to version 3.0 on 27 July 2017. Changes include: Eight new components for the contiguous U.S. (CONUS) and Alaska, including four deterministic models, two ensemble systems, and two post-processed statistical components Five new components for Hawaii and Puerto Rico Expanded forecast domains for the CONUS and Alaska A “Time of Day” (ToD), rather than NWP model, initial time concept Hourly NBM forecasts, with short, day 2-4, and extended forecasts Updated NBM guidance available 50-60 minutes after hourly run time New weather ...
Permalink![]()
![]()
![]()
Radio Wave Propagation
As a society we have become dependent on satellite communications, but satellites fail with alarming frequency. Before the advent of satellites, long distance communications were carried out with high frequency (HF) radio transmissions. This lesson examines the factors that control long-distance radio communications, with an emphasis on refraction in the ionosphere, frequency selection, and the effects of solar radiation.
Permalink![]()
![]()
![]()
GOES-R Series Multilingual Training Resources
This listing of multilingual training materials for the GOES-R series includes both foundational lessons and quick guides developed by various partners at the request of the U.S. National Weather Service and NESDIS. The selections included here represent materials translated to Spanish and Portuguese. Training contributors include COMET, RAMMB/CIRA, CIMSS, and SPoRT. Translation contributors/reviewers include the Servicio Meteorológico Nacional (SMN) in Argentina and the University of São Paulo in Brazil.
Permalink![]()
![]()
![]()
Unified Terrain in the National Blend of Models
This lesson discusses errors associated with the use of inconsistent terrain in the analyses in the Real-Time and the Un-Restricted Mesoscale Analyses (RTMA and URMA, respectively), and in downscaling numerical weather prediction model data to the resolution of the U.S. National Weather Service National Blend of Models (NBM). The sources of these inconsistencies are examined, and the errors that result are discussed. A solution is to use a unified, consistent terrain in the analyses and the NBM. This solution is only partial however, as resolution of small, meteorologically significant feature ...
Permalink![]()
![]()
![]()
GOES-16 and S-NPP/JPSS Case Exercise: Hurricane Harvey Surface Flooding
Satellite data are important tools for analyses and short-term forecasts of surface floodwater. This lesson will highlight the August 2017 flooding associated with Hurricane Harvey in southeastern Texas, one of the most costly weather disasters in U.S. history. Through the use of interactive exercises the learner will become familiar with use and interpretation of satellite imagery in regions with surface flooding. The lesson will use data from both the S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) and the GOES-16 Advanced Baseline Imager (ABI). The satellite-derived flood map and th ...
Permalink![]()
![]()
![]()
National Water Model, Part 1: Science and Products
This lesson provides an introduction to the benefits, important input (forcing data), and key products of the National Water Model. Both official and evolving products are presented. The lesson uses the flooding associated with Hurricane Harvey in August 2017 to demonstrate key products.
Permalink![]()
![]()
![]()
Instrumentation and Measurement of Atmospheric Pressure
This lesson provides information about current science and technologies for measuring atmosphere pressure. The lesson begins by reviewing the key physical laws governing atmospheric pressure, including Dalton's Law of Partial Pressures. Then, it explores typical requirements and uncertainty parameters related to atmospheric pressure sensors and provides details about the components of pressure sensors, including fluidic, mechanical, and electronic transducers. The lesson is part of the Instrumentation and Measurement of Atmospheric Parameters course series.
Permalink![]()
![]()
![]()
Geodetic Control in Land Surveying: Active vs. Passive
Aimed at surveyors and GIS professionals, this video explains the difference between active and passive control methods in surveying, and the strengths and weaknesses of each. Passive control is the traditional method of referencing positions to physical benchmarks that have known locations. Active control references positions to one or more Continuously Operating Reference Stations (CORS). These stations use continuous contact with global navigation satellite systems (GNSS/GPS) to provide a highly accurate and updated position.
Permalink![]()
![]()
![]()
Forecasters' Overview of the Middle East
This lesson provides an introduction to the Middle East for Navy meteorologists. It focuses on the major aspects of synoptic and mesoscale weather patterns, hazards to aviation and maritime operations, geography, oceanography, and climatology. The “Geography” Unit covers major political boundaries, cities, ports, topographical features, rivers, and seismicity. The “Oceanography” Unit includes major bathymetric features, mean sea surface temperature, vertical temperature profiles, salinity and velocity, ocean currents, and tidal ranges. The “Climatology” Unit covers the seasonal climatology of ...
Permalink![]()
![]()
![]()
Mei-Yu Front, Part 1: Ingredients for Heavy Precipitation and the Forecast Process in Taiwan
This lesson (available in Traditional Chinese) introduces the Mei-Yu Front characteristics and forecasting methodology used by the CWB to forecast precipitation over Taiwan. The lesson discusses the Mei-Yu Front's three-dimensional structure, lifting mechanisms, precipitation patterns and includes cases to help learners practice determining the possible area of heavy rainfall.
Permalink![]()
![]()
![]()
SatFC-J: The AMSR2 Microwave Imager
This short lesson describes the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the next-generation polar-orbiting satellite platforms. AMSR2’s primary mission is to improve scientists’ understanding of climate by providing estimates of precipitation, water vapor, cloud water, wind velocity, sea surface temperature, sea ice concentration, snow depth, and soil moisture. AMSR2 also advances weather forecasting through real-time imagery, value-added products, and input to numerical weather prediction. This lesson is part of the Satellite Foundational Course for JPSS (SatFC-J).
Permalink![]()
![]()
![]()
SatFC-J: The VIIRS Imager
This lesson introduces the VIIRS imager on board the Suomi NPP and JPSS satellites. The lesson briefly describes the capabilities, improvements, and benefits that VIIRS brings to operational meteorology. Numerous images are shown that demonstrate a variety of applications available in the AWIPS weather display system. This lesson is part of the Satellite Foundational Course for JPSS (SatFC-J).
Permalink![]()
![]()
![]()
SatFC-J: Orbits and Data Availability
This lesson presents a brief overview of NOAA's operational low Earth orbiting satellites, focusing on how their orbits define observational coverage and how ground receiving capabilities impact data latency from the observation time to product availability. This lesson is part of the Satellite Foundational Course for JPSS (SatFC-J).
Permalink![]()
![]()
![]()
Rapid Scan Applications and Benefits
This lesson introduces the capabilities and benefits of rapid scan imaging from geostationary meteorological satellites with a special focus on the current Meteosat Second Generation satellites. The lesson begins with an overview of current rapid scan imaging strategies and the products made from those observations. It then addresses nowcasting applications that benefit from these products with a focus on convection and its evolution. Other application areas that benefit from rapid scan observation are mentioned including the monitoring of fog and low stratus, wildfires, tropical cyclones, and ...
Permalink![]()
![]()
![]()
National Water Model, Part 2: Early Performance
In this lesson the learner will review and interpret data regarding the early performance of the National Water Model (versions 1.0 -1.2). Verification and evaluation of the National Water Model has been occurring since it went operational in August 2016. This lesson will review some of the main issues in model performance through early 2018, including some retrospective verification extending back to 2011. You will see how model performance has been improved as a result of verification. Among the topics addressed are peak flow timing errors, model bias and correlation, the impacts of basin ca ...
Permalink![]()
![]()
![]()
Interpreting and Communicating EPS Guidance: British Columbia Winter Storm
This 45-minute lesson provides an opportunity to use ensemble prediction system products to evaluate uncertainty in the forecast and then communicate that information effectively to a public audience. The lesson places learners in the role of a Meteorological Service of Canada forecaster who must assess forecast uncertainty and then issue early warning notifications to decision-makers regarding the winter storm. In a subsequent work shift during the event, the learner must effectively deliver forecast information via social media and respond to questions from the general public. The lesson is ...
Permalink