Author details
Author J.A. de Gouw |
Available document(s)


![]()
![]()
Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 3. Sommariva R.; Brown S.S.; Roberts J.M.; et al. - Copernicus GmbH, 2011During the Texas Air Quality Study II (TexAQS 2006) campaign, a PEroxy Radical Chemical Amplifier (PERCA) was deployed on the NOAA research vessel R/V Brown to measure total peroxy radicals (HO2+Σ RO2). Day-time mixing ratios of HO2+Σ RO2 between 25 and 110 ppt were observed throughout the study area – the Houston/Galveston region and the Gulf coast of the US – and analyzed in relation to measurements of nitrogen oxides, volatile organic compounds (VOC) and photolysis rates to assess radical sources and sinks in the region.
[article]Ozone production in remote oceanic and industrial areas derived from ship based measurements of peroxy radicals during TexAQS 2006
![]()
![]()
Available online: http://dx.doi.org/10.5194/acp-11-2471-2011
R. Sommariva ; S.S. Brown ; J.M. Roberts ; D.M. Brookes ; A.E. Parker ; P.S. Monks ; T.S. Bates ; D. Bon ; J.A. de Gouw ; G.J. Frost ; J.B. Gilman ; P.D. Goldan ; S.C. Herndon ; W.C. Kuster ; B.M. Lerner ; H.D. Osthoff ; S.C. Tucker ; C. Warneke ; E.J. Williams ; M.S. Zahniser
in Atmospheric Chemistry and Physics (ACP) > Vol. 11. N° 3 [03/01/2011] . - p.2471-2485During the Texas Air Quality Study II (TexAQS 2006) campaign, a PEroxy Radical Chemical Amplifier (PERCA) was deployed on the NOAA research vessel R/V Brown to measure total peroxy radicals (HO2+Σ RO2). Day-time mixing ratios of HO2+Σ RO2 between 25 and 110 ppt were observed throughout the study area – the Houston/Galveston region and the Gulf coast of the US – and analyzed in relation to measurements of nitrogen oxides, volatile organic compounds (VOC) and photolysis rates to assess radical sources and sinks in the region.
Language(s): English
Format: Digital (Free)Tags: United States of America ; Ocean-atmosphere interaction ; Observations ; Ozone
Add tag
[article]No review, please log in to add yours !
![]()
![]()
Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 3. Brock C.A.; Cozic J.; Bahreini R.; et al. - Copernicus GmbH, 2011We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea ...
[article]Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project
![]()
![]()
Available online: http://dx.doi.org/10.5194/acp-11-2423-2011
C.A. Brock ; J. Cozic ; R. Bahreini ; K.D. Froyd ; A.M. Middlebrook ; A. McComiskey ; J. Brioude ; O.R. Cooper ; A. Stohl ; K.C. Aikin ; J.A. de Gouw ; D.W. Fahey ; R.A. Ferrare ; R.-S. Gao ; W. Gore ; J.S. Holloway ; G. Hübler ; A. Jefferson ; D.A. Lack ; S. Lance ; R.H. Moore ; D.M. Murphy ; A. Nenes ; P.C. Novelli ; J.B. Nowak ; J.A. Ogren ; J. Peischl ; R.B. Pierce ; P. Pilewskie ; P.K. Quinn ; T.B. Ryerson ; K.S. Schmidt ; J.P. Schwarz ; H. Sodemann ; J.R. Spackman ; H. Stark ; D.S. Thomson ; T. Thornberry ; P. Veres ; L.A. Watts ; C. Warneke ; A.G. Wollny
in Atmospheric Chemistry and Physics (ACP) > Vol. 11. N° 3 [03/01/2011] . - p.2423-2453We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background) aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in southern Russia and southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion.
Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB) and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day−1 between 3 and 7 km and a slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO) in the BB plumes, which had been transported over distances >5000 km, were comparable to the high end of literature values derived from previous measurements in wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of the BB particles between the time they were emitted and the time they were observed in dense layers above the sea-ice inversion layer.Language(s): English
Format: Digital (Free)Tags: Aerosols ; Atmospheric circulation ; Climate ; Impact studies ; Cloud formation ; Research ; Arctic
Add tag
[article]No review, please log in to add yours !
![]()
![]()
Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution
Atmospheric Chemistry and Physics (ACP), Vol. 11. N° 3. Bon D.M.; Ulbrich I.M.; de Gouw J.A.; et al. - Copernicus GmbH, 2011Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements an ...
[article]Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution
![]()
![]()
Available online: http://dx.doi.org/10.5194/acp-11-2399-2011
D.M. Bon ; I.M. Ulbrich ; J.A. de Gouw ; C. Warneke ; W.C. Kuster ; M.L. Alexander ; A. Baker ; A.J. Beyersdorf ; D. Blake ; R. Fall ; J.L. Jimenez ; S.C. Herndon ; L.G. Huey ; W.B. Knighton ; J. Ortega ; S. Springston ; O. Vargas
in Atmospheric Chemistry and Physics (ACP) > Vol. 11. N° 3 [03/01/2011] . - p.2399-2421Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of ~2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.
Language(s): English
Format: Digital (Free)Tags: Atmosphere ; Volatile Organic Compounds (VOCs) ; Measure ; Urban zone ; Observations ; Mexico
Add tag
[article]No review, please log in to add yours !