Report of the Second International UV Filter Radiometer Calibration Campaign UVC-II

Davos, Switzerland, 25 May–5 October 2017
Report of the
Second International UV Filter Radiometer
Calibration Campaign UVC-II

Davos, Switzerland, 25 May-5 October 2017

G. Hülsen and J. Gröbner
EDITORIAL NOTE

METEOTERM, the WMO terminology database, may be consulted at:
Acronyms may also be found at: http://www.wmo.int/pages/themes/acronyms/index_en.html.

© World Meteorological Organization, 2018

The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to:

Chairperson, Publications Board
World Meteorological Organization (WMO)
7 bis, avenue de la Paix
P.O. Box 2300
CH-1211 Geneva 2, Switzerland
Tel.: +41 (0) 22 730 84 03
Fax: +41 (0) 22 730 80 40
E-mail: Publications@wmo.int

NOTE

The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.

The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members.

This publication has been issued without formal editing.
The main task of the World Calibration Center for UV (WCC-UV) is to assist the World Meteorological Organization’s (WMO) Members operating Global Atmosphere Watch (GAW) stations to link their UV radiation observations to the WMO/GAW reference scale through calibrations and intercomparisons of the station instruments with the standard instruments operated by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC). Therefore an “International UV Filter Radiometer Calibration Campaign” was organized at the WCC-UV of PMOD/WRC. The campaign lasted from 25th May to 5th October 2017; it is located at 1610 m a.s.l. in the Swiss Alps.

A total of 75 UV filter radiometers from 37 countries participated in the campaign, of which 22 were from Europe. The nine different radiometer types represented at the campaign were Kipp & Zonen / Sintec (28), Yankee UVB-1 (11), analog and digital Solar Light V. 501 (19/9), Delta Ohm LP UVI 02 (2), EKO MS-212W (2) and each one of Indium Sensor 1E.1-081, Genicom GUVB, Eppley TUVR and Middleton Solar UVR1-B2. The filter weighting function were mostly approximating the erythemal action spectrum and some UVB, UVA and UVG. 16 radiometers were not well maintained according to the recommendations of Webb et al. 2007.

The two reference spectroradiometers QASUME and QASUMEII of the WCC-UV operated during the campaign agreed within ±2%. The atmospheric conditions during the campaign varied between fully overcast to clear skies and allowed a reliable calibration for all instruments.

The standard calibration methodology, using the instrumental spectral as well as the angular response functions measured in the laboratory, provided remarkable agreement with the reference spectroradiometer, with expanded uncertainties (k=2) of around 6% for most instruments.

The measurements of the broadband radiometers were analysed both with the PMOD/WRC calibration as well as the calibration used by the home institutes. The average date of the user calibration was five years prior to this campaign (e.g. 2012) and 40 out of the 75 instruments used a single calibration factor, instead of the suggested calibration matrix [5, 7, 8]. The relative differences between the measurements using the user calibration and the one from PMOD/WRC varied between 0.04% to differences larger than 50% for specific instruments.
1. INTRODUCTION

The International UV Filter Radiometer Calibration Campaign was held at the World Calibration Center for UV (WCC-UV) of the Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC) from 25th May to 5th October 2017.

The campaign was initiated to fulfill the main task of the WCC-UV, which is to assist the World Meteorological Organization’s (WMO) Members operating Global Atmosphere Watch (GAW) stations to link their UV radiation observations to the WMO/GAW reference scale through calibrations and intercomparisons of the station instruments with the standard instruments operated by PMOD/WRC. The absolute calibration of the WCC-UV is supported by Calibration and Measurement Capabilities (CMC's) within the CIPM MRA1.

The objective of the campaign was to provide a calibration traceable to the WCC-UV reference for all participating radiometers, in view of homogenizing UV measurements in all participating countries.

The specific tasks of the campaign were to individually characterize each radiometer with respect to the relative spectral and angular responsivity in the laboratory following the standard operating procedures of the WCC-UV. The absolute calibration was obtained by direct intercomparison of solar irradiance measurements with the WCC-UV reference spectroradiometers on the roof platform of PMOD/WRC.

This filter radiometer calibration campaign followed three similar campaigns held in 1995 in Helsinki, Finland [1], in 1999 in Thessaloniki, Greece [2] and in 2006 in Davos, Switzerland [3]. 75 broadband radiometers from 37 institutions participated in the intercomparison campaign. The radiometers were for the most part reference instruments within their respective regional or national networks.

In addition, to providing traceability to the solar UV irradiance reference of the World Calibration Center for UV, a calibration facility intercomparison was organized. A subset of eight radiometers participated in this activity from the National Oceanic and Atmospheric Administration (NOAA) and ISO-CAL, USA, the State Meteorological Agency (AEMET) and the National Institute of Aerospace Technology (INTA) Spain, the Aristotle University of Thessaloniki Laboratory of Atmospheric Physics (LAP) (Greece), Innsbruck Medical University (IBK), Austria, the Regional Agency for the Protection of the Environment (ARPA-Piemonte), Italy and the Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Belgium. The task of the calibration facility intercomparison was to calibrate and characterize the radiometer before and after the campaign. The outcome of this intercomparison will be discussed in a separate publication.

1 PMOD/WRC follows the requirements for the competence of testing and calibration laboratories according to ISO/IEC 17025. PMOD/WRC is a designated institute of the Swiss Federal Office of Metrology, the Swiss signatory of the CIPM MRA (International Committee for Weights and Measures - Mutual Recognition Arrangement).
The measurement campaign at PMOD/WRC allowed comparing the original calibration with the WCC-UV based calibration on the one hand, and to estimate the variability between the UV radiometer measurements based on calibrations originating from different sources (manufacturer or national calibration laboratory) on the other hand.

The result of the campaign was the release of calibration certificates to all participating institutes traceable to the WCC-UV reference and thus to the international system of units.
2. SETUP AND MEASUREMENTS

The calibration and intercomparison campaign took place at PMOD/WRC, Switzerland. The period from 19 June to 18 August 2017 was selected for the calibration. The measurement platform is located on the roof of PMOD/WRC at 1610 m a.s.l., latitude 46.8 N, longitude 9.83 E. The measurement site is in the Swiss Alps and its horizon is limited by mountains; the Davos valley runs NE to SW.

![Figure 1. Roof platform of PMOD/WRC](image)

The laboratory characterizations – spectral and angular responsivity measurements – were accomplished during the campaign. Due to the early arrival of nine radiometers the calibration campaign started on 25th May. The radiometers were installed on the roof platform of PMOD/WRC and acquired enough calibration days before the scheduled start of the campaign.

Most radiometers arrived beginning of June. Late arrivals used the last days of the scheduled campaign period. Four radiometers had to be repaired and needed extended measurement days until 5th October.

The QASUME and QASUMEII [4] spectroradiometers were installed in April 2017. QASUMEII operated continuously until beginning of October, whereas QASUME was traveling to site audits in Spain from 22 May to 14 June 2017.

The measurement data used for the calibration were obtained in the period from 25th May to 5th October, totalling 134 measurement days. The measurement conditions in summer 2017 were very variable, with periods of clear sky, clouds, rain and snow.
The total column ozone was obtained from Brewer spectrophotometer #163 located next to QASUME. From 19th May till 30th June this Brewer was participating in the 12th RBCC-E in Spain. Therefore, OMI Ozone data were used in this period. The OMI data were validated using Brewer #072 located around 30 m away from QASUME. The total column ozone varied between 256 DU and 423 DU with a mean value of 304 DU over the measurement period.
Figure 4. Total ozone column over Davos
3. INSTRUMENTATION FOR THE ABSOLUTE CALIBRATION

75 filter radiometers from 58 institutions of 37 countries took part in this campaign. Their weighted functions for solar irradiance are: UVE (erythemal) [5], UVB (280nm-315nm), UVB320 (280nm-320nm), UVA (315nm-400nm) and UVG (280nm-400nm).

Table 1. Summary of participating radiometers

<table>
<thead>
<tr>
<th>Number</th>
<th>Manufacturer</th>
<th>Type</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kipp & Zonen</td>
<td>CUV4</td>
<td>UVG</td>
</tr>
<tr>
<td>8</td>
<td>Kipp & Zonen</td>
<td>UV-S-AE-T / UV-S-AB-T</td>
<td>UVA+UVE/UVB</td>
</tr>
<tr>
<td>3</td>
<td>Kipp & Zonen</td>
<td>UV-S-A-T</td>
<td>UVA</td>
</tr>
<tr>
<td>2</td>
<td>Kipp & Zonen</td>
<td>UV-S-B-T</td>
<td>UVB</td>
</tr>
<tr>
<td>11</td>
<td>Kipp & Zonen</td>
<td>UV-S-E-T</td>
<td>UVE</td>
</tr>
<tr>
<td>2</td>
<td>Sintec</td>
<td>UV-S-A-T</td>
<td>UVA</td>
</tr>
<tr>
<td>1</td>
<td>Sintec</td>
<td>UV-S-AE-T</td>
<td>UVA+UVE</td>
</tr>
<tr>
<td>16</td>
<td>Solar Light</td>
<td>SL501 (analog)</td>
<td>UVA</td>
</tr>
<tr>
<td>3</td>
<td>Solar Light</td>
<td>SL501 (analog)</td>
<td>UVE</td>
</tr>
<tr>
<td>9</td>
<td>Solar Light</td>
<td>SL501 (digital)</td>
<td>UVE</td>
</tr>
<tr>
<td>11</td>
<td>YES</td>
<td>UVB-1</td>
<td>UVE/UVB</td>
</tr>
<tr>
<td>2</td>
<td>Delta Ohm</td>
<td>LP UVI 02 AC/AV</td>
<td>UVE</td>
</tr>
<tr>
<td>1</td>
<td>Indium Sensor</td>
<td>1E.1-081</td>
<td>UVE</td>
</tr>
<tr>
<td>1</td>
<td>Genicomp</td>
<td>GUVB-T12GD-3LWH6</td>
<td>UVE</td>
</tr>
<tr>
<td>1</td>
<td>Eppley</td>
<td>TUVR</td>
<td>UVG</td>
</tr>
<tr>
<td>2</td>
<td>EKO</td>
<td>MS-212W</td>
<td>UVE</td>
</tr>
<tr>
<td>1</td>
<td>Middleton Solar</td>
<td>UVR1-B2</td>
<td>UVB</td>
</tr>
</tbody>
</table>

The analog voltages of the radiometers were acquired with a Campbell CR7 logger (reference: Keysight 34420A Micro-Ohm Meter; calibration date: 9th February 2017) every 10 s. The two EKO systems used their own data acquisition system. The data from the digital SL-501 data acquisition recorders were read out using a custom interface with an interval of 2 s. Their sensitivity factor was set to 10 to improve their resolution.

Figure 5. CR7 logger (left) and connection panel 1 and 2
The data of the two reference spectroradiometers QASUME and QASUMEII provided the reference for the outdoor measurements. Both spectroradiometers were synchronized and measured solar irradiance spectra in the range 290 nm to 420 nm every 15 or 30 minutes.

Figure 6. Picture of the main set of participating radiometers. SL (front), KZ/Sintec (middle), YES (back), Delta Ohm, Indium Sensor, Genicom, Eppley, EKO and Middleton Solar (last row).
<table>
<thead>
<tr>
<th>Type</th>
<th>SN</th>
<th>Country</th>
<th>Institute</th>
<th>Calibration Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>KZ CUVE</td>
<td>080018</td>
<td>USA</td>
<td>National Renewable Energy Lab (NREL)</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-AE-T</td>
<td>000550</td>
<td>Italy</td>
<td>ARPA Valle d’Aosta</td>
<td>F, Coscor</td>
</tr>
<tr>
<td>KZ UV-S-AE-T</td>
<td>020614</td>
<td>United Kingdom</td>
<td>Centre for Atmospheric Science, University of Manchester</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>KZ UV-S-AE-T</td>
<td>070635</td>
<td>Germany</td>
<td>DWD/MOL-RAO</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-AE-T</td>
<td>080002</td>
<td>France</td>
<td>Institut Pierre Simon Laplace (IPSL)</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-AE-T</td>
<td>080003</td>
<td>Italy</td>
<td>ARPA Piemonte</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-AB-T</td>
<td>110141</td>
<td>USA</td>
<td>ISO-CAL North America</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-AB-T</td>
<td>120023</td>
<td>Ecuador</td>
<td>INAMHI (Sistemas Tecnológicos Alcatelni Cla. Ltda)</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-AB-T</td>
<td>120132</td>
<td>Spain</td>
<td>CENER</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-ET</td>
<td>070642</td>
<td>Hong Kong</td>
<td>Hong Kong Observatory</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-ET</td>
<td>070643</td>
<td>Spain</td>
<td>Universidad de Extremadura</td>
<td>C, F</td>
</tr>
<tr>
<td>KZ UV-S-A-T</td>
<td>080005</td>
<td>Spain</td>
<td>Izana Atmospheric Research Center (AEMET)</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-A-T</td>
<td>100013</td>
<td>Hong Kong</td>
<td>Hong Kong Observatory</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-ET</td>
<td>110001</td>
<td>Russia</td>
<td>Lomonosov Moscow State University, Faculty of Geography</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-ET</td>
<td>120056</td>
<td>Russia</td>
<td>Lomonosov Moscow State University, Faculty of Geography</td>
<td>C, f,</td>
</tr>
<tr>
<td>KZ UV-S-B-T</td>
<td>120077</td>
<td>France</td>
<td>Institut Pierre Simon Laplace (IPSL)</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-ET</td>
<td>150110</td>
<td>Estonia</td>
<td>Estonian Environment Agency</td>
<td>C, F</td>
</tr>
<tr>
<td>KZ UV-S-ET</td>
<td>150124</td>
<td>France</td>
<td>Laboratoire de l’Atmosphere et des Cyclones, La Reunion</td>
<td>C, F</td>
</tr>
<tr>
<td>KZ UV-S-B-T</td>
<td>160142</td>
<td>Spain</td>
<td>Agencia Estatal de Meteorologia (AEMET)</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>KZ UV-S-ET</td>
<td>160158</td>
<td>Taiwan</td>
<td>National Central University</td>
<td>C, F</td>
</tr>
<tr>
<td>KZ UV-S-ET</td>
<td>160177</td>
<td>Chile</td>
<td>Dirección General de Aeronáutica Civil</td>
<td>C</td>
</tr>
<tr>
<td>KZ UV-S-ET</td>
<td>170204</td>
<td>South Africa</td>
<td>NMRIA</td>
<td>C</td>
</tr>
<tr>
<td>SCI UV-E</td>
<td>00341</td>
<td>Germany</td>
<td>Dept. of Dermatology / Medical Fac. TU Dresden</td>
<td>C, F</td>
</tr>
<tr>
<td>SCI UV-E</td>
<td>00400</td>
<td>France</td>
<td>Laboratoire d’Optique Atmosphérique, University Lille</td>
<td>C</td>
</tr>
<tr>
<td>SCI UV-E</td>
<td>00407</td>
<td>Germany</td>
<td>Meteorologisches Institut München</td>
<td>C, F</td>
</tr>
<tr>
<td>SLS01</td>
<td>1453</td>
<td>Finland</td>
<td>FMI Helsinki</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>1492</td>
<td>Switzerland</td>
<td>PMOD/WRC</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01</td>
<td>1493</td>
<td>Switzerland</td>
<td>PMOD/WRC</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01</td>
<td>1890</td>
<td>France</td>
<td>Reuniwatt</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>1903</td>
<td>Switzerland</td>
<td>Federal Office of Meteorology and Climatology MeteoSwiss</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>2839</td>
<td>France</td>
<td>ASS Sécureté Solaire</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>2875</td>
<td>Switzerland</td>
<td>PMOD/WRC</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01</td>
<td>3564</td>
<td>USA</td>
<td>Colorado State University - UV-B Program</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>3660</td>
<td>Switzerland</td>
<td>PMOD/WRC</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01</td>
<td>4402</td>
<td>Lithuania</td>
<td>Lithuanian Hydrometeorological Service</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>4405</td>
<td>Lithuania</td>
<td>Lithuanian Hydrometeorological Service</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>4433</td>
<td>USA</td>
<td>Colorado State University - UV-B Program</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>5760</td>
<td>Luxembourg</td>
<td>Computarium and meteor.CO Classique Diekirch</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>5790</td>
<td>Italy</td>
<td>CNR-IIBMET</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01</td>
<td>8887</td>
<td>Norway</td>
<td>Norwegian Radiation Protection Authority (NRPA)</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>19474</td>
<td>Portugal</td>
<td>Instituto Português do Mar e da Atmosfera</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>19488</td>
<td>Mexico</td>
<td>Instituto de Geofisica, Universidad Nacional Autónoma de Mexico</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>19507</td>
<td>Austria</td>
<td>Innsbruck Medical University, Division for Biomed. Physics</td>
<td>C</td>
</tr>
<tr>
<td>SLS01</td>
<td>23148</td>
<td>Switzerland</td>
<td>Central Weather Bureau</td>
<td>C</td>
</tr>
<tr>
<td>SLS01digital</td>
<td>0922</td>
<td>Sweden</td>
<td>Swedish Meteorological and Hydrological Institute (SMHI)</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01digital</td>
<td>0936</td>
<td>Poland</td>
<td>Institute of Meteorology and Water Management National Research Institute</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01digital</td>
<td>1119</td>
<td>Poland</td>
<td>Research Institute</td>
<td>C</td>
</tr>
<tr>
<td>SLS01digital</td>
<td>2713</td>
<td>Czech Republic</td>
<td>CHMI</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01digital</td>
<td>4811</td>
<td>Slovak Republic</td>
<td>Slovak Hydrometeorological Institute</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01digital</td>
<td>4834</td>
<td>Peru</td>
<td>National Service of Meteorology and Hydrology of Peru</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01digital</td>
<td>10403</td>
<td>Hungary</td>
<td>Hungarian Meteorological Service, Gyreby Observatory</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01digital</td>
<td>14078</td>
<td>Argentina</td>
<td>Servicio Meteorologico Nacional</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>SLS01digital</td>
<td>16721</td>
<td>Brazil</td>
<td>Universidade de São Paulo</td>
<td>C</td>
</tr>
<tr>
<td>YES UVB-1</td>
<td>009094</td>
<td>USA</td>
<td>National Oceanic and Atmospheric Administration (NOAA)</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>YES UVB-1</td>
<td>010938</td>
<td>Switzerland</td>
<td>PMOD/WRC</td>
<td>C</td>
</tr>
<tr>
<td>YES UVB-1</td>
<td>030520</td>
<td>Spain</td>
<td>Agencia Estatal de Meteorologia (AEMET)</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>YES UVB-1</td>
<td>030525</td>
<td>Iceland</td>
<td>Icelandic Meteorological Office</td>
<td>C</td>
</tr>
<tr>
<td>YES UVB-1</td>
<td>090703</td>
<td>Argentina</td>
<td>CITDEF</td>
<td>C</td>
</tr>
<tr>
<td>YES UVB-1</td>
<td>921106</td>
<td>USA</td>
<td>National Renewable Energy Lab (NREL)</td>
<td>C</td>
</tr>
<tr>
<td>YES UVB-1</td>
<td>921116</td>
<td>Greece</td>
<td>Aristotle Uni. of Thessaloniki, Lab. of Atmos. Physics (LAP)</td>
<td>C</td>
</tr>
<tr>
<td>YES UVB-1</td>
<td>930204</td>
<td>USA</td>
<td>Colorado State University - UV-B Program</td>
<td>C</td>
</tr>
<tr>
<td>YES UVB-1</td>
<td>960819</td>
<td>USA</td>
<td>Colorado State University - UV-B Program</td>
<td>C</td>
</tr>
<tr>
<td>YES UVB-1</td>
<td>990608</td>
<td>Spain</td>
<td>Instituto Nacional de Técnica Aeroespacial (INTA)</td>
<td>C, F, Coscor</td>
</tr>
<tr>
<td>YES UVB-1</td>
<td>990703</td>
<td>Hong Kong</td>
<td>Hong Kong Observatory</td>
<td>C</td>
</tr>
<tr>
<td>LP UVI 02 AC</td>
<td>15010872</td>
<td>Italy</td>
<td>Delta Ohm</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>LP UVI 02 AV</td>
<td>17010973</td>
<td>Italy</td>
<td>Delta Ohm</td>
<td>C</td>
</tr>
<tr>
<td>Indium Sensor</td>
<td>12688.17</td>
<td>Deutschland</td>
<td>IndiumSensor GmbH</td>
<td>C</td>
</tr>
<tr>
<td>Genicom</td>
<td>C-586</td>
<td>Republic of Korea</td>
<td>Genicom</td>
<td>C</td>
</tr>
<tr>
<td>Eppley TUVR</td>
<td>26991</td>
<td>Greece</td>
<td>National Observatory of Athens</td>
<td>C</td>
</tr>
<tr>
<td>EKOM-MS122W</td>
<td>511132.04</td>
<td>Belgium</td>
<td>Royal Belgian Institute for Space Aeronomy, BIRA-IASB</td>
<td>C, f, Coscor</td>
</tr>
<tr>
<td>EKO MS-212W</td>
<td>517008.02</td>
<td>Japan</td>
<td>EKO Instruments</td>
<td>C</td>
</tr>
<tr>
<td>MS UVR1-B2</td>
<td>5089</td>
<td>Australia</td>
<td>Middleton Solar</td>
<td>C</td>
</tr>
</tbody>
</table>
4. LABORATORY CHARACTERIZATION

The spectral and angular responsivity functions (SRF and ARF) of the radiometers were measured in the WCC-UV laboratory at PMOD/WRC. The method is described in the following four quality management documents: QM-PD-UV-0045 and QM-SOP-UV-0062 (SRF); QM-PD-UV-0043 and QM-SOP-UV-0060 (ARF).

4.1 Relative spectral response facility

The relative spectral response facility consists of an Acton SP2500 double monochromator with gratings of 2400 lines/mm. The wavelength can be selected within the range 200 nm to 1200 nm and the chosen slit width yields a triangular slit function with a full width at half maximum of 2.0 nm. The light of a 1000 W Xenon lamp is focused onto the entrance slit. A lens array installed after the exit slit produces a homogeneous 12 mm x 12 mm reference plane.

Behind the lens array a quartz plate mounted at 45° relative to the vertical transmits about 92% of the radiation towards the test detector while about 8% are deflected towards a photodiode, which is used to monitor the stability of the monochromator signal.

Due to the large receiving surfaces of some radiometers only part of those detectors could be illuminated by the monochromatic light source. Thus, spatial inhomogeneities of the receiving surface of the radiometer were not considered during the SRF measurement.

![Figure 7. Spectral Response Setup of the WCC-UV](image)

The relative spectral throughput of the setup was determined by measuring the outgoing radiation with a reference silicon diode and was verified using the QASUME spectroradiometer between 270 nm and 420 nm, with a step of 2 nm.
The wavelength scale of the SRF setup was determined by two methods which produced equivalent results:

- A mercury discharge lamp was placed at the entrance of the monochromator and the throughput measured with a photodiode is used to determine the slit function and thus the wavelength offset.
- The slit function measurements of the complete setup (with Xe-Lamp source) with the QASUME spectroradiometer allowed the determination of the wavelength offset.

The variability of the radiometer dark signal was monitored for five minutes prior to the SRF measurement, as indicator for the minimum signal to noise ratio of the radiometer. The SRF measurement itself was obtained over the wavelength range 420 nm down to 270 nm with a step size of 2 nm.

The Solar Light data-loggers of the digital SL501 radiometers were set to a sensitivity of 10 to increase the resolution of the stored measurements. To further increase the signal to noise ratio, the output signal was sampled 10 to 20 times at each wavelength setting of the monochromatic light source.

The SRF was obtained from the measurements by subtracting the dark signal measured before initiating the wavelength scan, and normalizing it to the maximum signal.

![Figure 8. SRF of a KZ radiometer](image)

4.2 Angular response facility

The angular response function of the radiometers was measured on a 3 m long optical bench. A 1000 W Xenon lamp was mounted at one end of the optical bench and served as radiation source. The detector was mounted on a goniometer at the other end with the vertical rotation axis passing through the plane of the receiving surface of the radiometer. The resolution of the
rotation stage was 29642 steps per degree, or 0.12 arcseconds. The homogeneity of the radiation at the detector reference plane was measured and optimised to better than 1% over the receiving surface area of the detector. A baffle was placed in the beam path to reduce stray light and a WG305 filter with a 50% cut off at 303 nm removed radiation below approx. 300 nm.

Figure 9. Angular response setup of the WCC-UV

The normal alignment of the radiometer is done by a mirror tool, which reflected a laser beam in the optical axis. This method provided an adjustment precision of better than 0.1 degree. The measurements were performed in two orientations of the detector so that the angular response could be determined for the four quadrants N, S, E, W; the N orientation being defined by the connector of the radiometer.

Figure 10. Mounting of an EKO MS-212W radiometer onto the ARF setup
The ARF for each quadrant was obtained by normalizing the measurements at each angle to the reference measurement at normal incidence. The cosine error of each quadrant was calculated from the ARF by assuming an isotropic radiation distribution and integrating it over the whole hemisphere. The final ARF was obtained by averaging the measurements of the four quadrants. Five instruments show a deviation between the four quadrants, which is an indication of a tilt of the sensor relative to the optical axis. Depending on the mounting of the radiometer this tilt can lead to an azimuth dependence of the solar measurements.

Figure 11. ARF of a KZ radiometer (left) and the corresponding cosine error (right)
5. **CALCULATION OF THE CALIBRATION FACTORS**

The absolute calibration measurements were carried out on the roof of PMOD/WRC. The method is described in the two quality management documents QM-PD-UV-0041 and QM-SOP-UV-0058. A detailed description can be found in [6]. The main steps of the procedure are summarized below.

The calculation of the weighted irradiance from the radiometer data follows the equation published in [6,7]:

\[
E_{\text{CIE}} = (U - U_{\text{offset}}) \cdot C \cdot f_{n}(SZA,TO_3) \cdot \text{Coscor}
\]

where \(U\) and \(U_{\text{offset}}\) are the raw and dark signals from the radiometer respectively; \(C\) represents the absolute calibration factor determined for a solar zenith angle, \(SZA\), of 40° and total column ozone, \(TO_3\), of 300 DU. The conversion function, \(f_{n}\), converts from the detector weighted solar irradiance to erythemal weighted irradiance (or other weighting function, see section 1)\(^2\). By definition the function is normalized to unity for a total ozone column of 300 DU and a solar zenith angle of 40°. \(\text{Coscor}\) corrects for the detector cosine error. The dark offset, \(U_{\text{offset}}\), is determined every day during the night as the average over all measurements between 0 to 4 UT and 20 to 24 UT at PMOD/WRC.

5.1 **Spectral correction function, \(f_n\)**

The conversion function, \(f_{n}\), accounts for the mismatch of the detector spectral responsivity and the norm weighting function and is calculated as

\[
f(SZA,TO_3) = \frac{\int CIE(\lambda)E_{\text{rad}}(\lambda)d\lambda}{\int SRF(\lambda)E_{\text{rad}}(\lambda)d\lambda}
\]

where \(E_{\text{rad}}\) represents a set of solar spectra calculated with a radiative transfer model for different \(SZA\) and \(TO_3\). The SRF is obtained from the laboratory measurement described above, and \(CIE\) represents the selected action spectrum.

\(^2\) Some users calculate \(f_{n}^*\) with a cosine correction function included.
5.2 Cosine correction function, Coscor

The angular response of UV radiometers deviates from the nominal cosine response. The cosine correction function, Coscor, is used to correct the data. This correction depends on the atmospheric conditions and especially on the relative fraction of direct and diffuse radiation. The cosine correction assumes an isotropic diffuse radiation distribution; the fraction of direct and diffuse radiation is modelled by a radiative transfer model in dependence of the solar zenith angle. For the determination of the calibration factor only two cases were distinguished:
- Clear sky: A cosine correction function $1/f_{glo}$ in dependence on the SZA was used.
- Diffuse sky: Only the diffuse cosine correction factor $1/f_{dir}$ was applied to the calibration.

This simple approximation results in substantial uncertainties especially during rapidly changing cloud conditions. Therefore, only the clear or completely overcasted sky data were used for the calibration. The following equations illustrate the derivation of Coscor:

\[
f_{dir} = \frac{ARF(\theta)}{\cos(\theta)}, \tag{3}
\]

\[
f_{dif} = 2 \cdot \int_{0}^{\pi/2} ARF(\theta) \sin(\theta) d\theta, \tag{4}
\]

\[
f_{glo} = f_{dir} \frac{E_{dir}}{E_{glo}} + f_{dif} \frac{E_{dif}}{E_{glo}}, \tag{5}
\]

where f_{dir} is the cosine error of the radiometer, f_{dif} represents the diffuse cosine error and f_{glo} the global cosine error of the radiometer.

Figure 14. Clear sky cosine correction function (f_{glo}) of a KZ (left) and a YES radiometer (right)
5.3 Absolute calibration factor, C

The calibration factor, C, is obtained by intercomparison with the solar spectrum measured by the spectroradiometer weighted with the SRF of the radiometer. Thus,

$$C = \frac{E_{DET}}{U_{DET} - U_{offset}} \cdot \frac{1}{Coscor} \cdot \frac{1}{f(40^\circ, 300 DU)},$$

(6)

Figure 15. Calibration factors determined for the campaign period for a KZ radiometer. The plots show the inverse of C as defined in the equation above to facilitate the interpretation. A lower calibration factor means a lower signal measured with the radiometer.
6. **UNCERTAINTY BUDGET**

6.1 **WCC-UV broadband radiometer calibration**

The uncertainty budget for the calibration of UV broadband radiometers is defined in the quality management document QM-OA-UV-0036. The expanded uncertainty is composed of the following uncertainty contributions according to equation 6:

- E_d is the detector weighted spectrum, recorded by the reference spectroradiometer (see Table 2).
- U_d is the signal of the UV radiometer, averaged over the recording time of the spectroradiometer.
- U_{offset} is the dark signal of the UV radiometer; calculated daily.
- C_d is the variability of the calibration factor during the calibration period (see Figure 15 as example).
- f_{var} accounts for the mismatch of the measured and modelled correction function, f_n.
- d_{SRF}: The uncertainty of the SRF measurement is composed of the extrapolation to 400 nm as well as the measurement uncertainty of the SRF itself.

The uncertainty of the cosine correction ($Coscor$) doesn't add to the total uncertainty because it is included through the diurnal variability of the calibration factor C_d.

The nominal uncertainty budget is summarized in Table 3. The expanded uncertainties stated on the individual certificates issued for the campaign are calculated from the actual data of the specific radiometer calibration and these deviate slightly from the values shown in Table 3.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>x_i</th>
<th>$[E]$</th>
<th>Typ</th>
<th>Distribution</th>
<th>n_{ui}</th>
<th>$u(x_i)$</th>
<th>$[E]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_d</td>
<td>1-10</td>
<td>UVI</td>
<td>B</td>
<td>Normal</td>
<td>inf</td>
<td>2.3</td>
<td>%</td>
</tr>
<tr>
<td>U_d</td>
<td>0-1</td>
<td>V</td>
<td>B</td>
<td>Rectangular</td>
<td>inf</td>
<td>0.2</td>
<td>%</td>
</tr>
<tr>
<td>U_{offset}</td>
<td>V</td>
<td>B</td>
<td>Rectangular</td>
<td>inf</td>
<td>0.25</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>C_d</td>
<td>0.2</td>
<td>Wm2nm$^{-1}$V$^{-1}$</td>
<td>A</td>
<td>Normal</td>
<td>~3</td>
<td>1.5</td>
<td>%</td>
</tr>
<tr>
<td>f_{var}</td>
<td></td>
<td>B</td>
<td>Rectangular</td>
<td>inf</td>
<td>0.6</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>d_{SRF}</td>
<td></td>
<td>B</td>
<td>Rectangular</td>
<td>Inf</td>
<td>0.6</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

$u(C)$ 2.9 %
$u(C)_{95}$ 5.8 %
6.2 **Manufacturer calibration of broadband radiometers**

Most UV radiometers are delivered to the customers either with a certificate of calibration or their electronic amplifier is adjusted to set a nominal relationship between UV irradiance and radiometer output signal. At the campaign some participants sent the radiometer together with this certificate where the uncertainty of the calibration should be stated.

6.3 **Reference spectroradiometer QASUME**

The uncertainty budget for solar UV measurements using QASUME and QASUMEII is summarized in Table 4. The estimation of the various uncertainty components is based on the procedure outlined in Gröbner at al. 2005 [7], with reduced uncertainty values due to the improved characterizations and calibrations developed during the European Joint Research Project "Traceability for surface spectral solar ultraviolet radiation". The uncertainty contributions shown in the table are described in [4].

<table>
<thead>
<tr>
<th>Uncertainty Parameter</th>
<th>Relative Std Uncertainty /%</th>
<th>QASUME</th>
<th>QASUMEII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiometric calibration (λ≥300 nm)</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 W lamp stability (one year)</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinearity (PMTor PC)</td>
<td>0.25</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>ND filter transmission</td>
<td>n/a</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature dependence</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angular response (Clear Sky / Diffuse Sky)</td>
<td>0.6 / 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated cosine error</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement noise</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement noise (λ=300 nm; SZA=75°)</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength shift (after matSHIC)</td>
<td>0.1, 0.5 (λ=300 nm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined uncertainty</td>
<td>0.98</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Combined uncertainty (DS)</td>
<td>0.83</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Combined uncertainty (λ=300 nm)</td>
<td>3.66</td>
<td>3.67</td>
<td></td>
</tr>
<tr>
<td>Expanded uncertainty (k=2)</td>
<td>1.95</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>Expanded uncertainty (k=2, DS)</td>
<td>1.66</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>Expanded uncertainty (k=2, λ=300 nm)</td>
<td>7.32</td>
<td>7.34</td>
<td></td>
</tr>
</tbody>
</table>
7. CAMPAIGN RESULTS

7.1 Spectroradiometer intercomparison

The two reference spectroradiometers QASUME and QASUMEII measured synchronized solar irradiance spectra in the range 290 nm to 400 nm every 0.25 nm every 15/30 minutes. The instrument entrance optics were located within less than 50 cm from each other at the same height and distant from the broadband radiometers by 1 m to 12 m.

Figure 16. Entrance optic of QASUME (right) and QASUMEII (left)

The intercomparison of the solar irradiance spectra followed the standard operating procedure of a QASUME intercomparison, i.e. the spectra were convolved to a 1 nm slit width and wavelength adjusted to a common wavelength scale using the matSHIC algorithm. The intercomparison of all measurements at selected wavelengths and the average over the measurement period is shown in the figures below.

Figure 17. Mean ratio of QASUMEII / QASUME (clear sky data) at PMOD/WRC, 8th April 2017 (098) to 8th October 2017 (281)
Figure 18. Ratio of QASUMEII / QASUME (clear sky data) at PMOD/WRC, 8th April 2017 (098) to 8th October 2017 (281)

As can be seen in the figure the difference between the two instruments are well within the uncertainty bounds defined in Table 4 with an average offset of 0% and a variability of less than or equal to 3%. The higher ratios for the UVB irradiance for the DOYs 169- till 241 are due to a faster scan frequency of 15 min which resulted in lower calculated QASUME values in this wavelength range. The reason is that the recovery time of the photomultiplier was reduced to a few minutes for these scan settings affecting the stability of the dark current.

The QASUMEII data was used as reference for the calibration of the broadband radiometers. This system was calibrated several times during the intercomparison period using a portable monitor system with 250 W lamps. The spectroradiometers remained stable within ±1% for the period. The temperature of the monochromator was stabilized to 27.1 ± 0.2 °C and the diffuser head was heated to a temperature of 28.7 ± 0.7 °C.
Figure 19. QASUMEII responsivity change based on T68523, 2017

Figure 20. QASUMEII temperature stability of the monochromator and the input optic

7.2 Radiometer intercomparison

The raw data of the broadband UV radiometers of the whole campaign (all sky conditions, without precipitation) were converted to weighted solar irradiance using the "PMOD" calibration factors on the one hand, and the "USER" supplied original calibration factors\(^3\) on the other. The

\(^3\) Most calibration factors from the participants entered the database of the WCC-UV before the start of the campaign, which enabled a "blind" intercomparison. Two institutes (LAP and Middleton Solar) delivered the factors after the campaign because of technical problems during their prior-campaign calibration period.
figures show an example of the relative ratio between the two data sets with respect to the reference measurements calculated from QASUMEII.

Figure 21. Erythemal weighted broadband irradiance vs. QASUMEII reference data - plotted against the time (left) and as a histogram distribution (right). In this example the data of UVE channel of KZ120023 was used.

Figure 22. Erythemal weighted broadband irradiance vs. QASUMEII reference data - plotted against the solar zenith angle. Left: PMOD calibration; right: USER calibration. In this example the data of UVE channel of KZ120023 was used.
The figure below summarizes the intercomparison of the PMOD and USER calibration relative to the reference. Displayed is the median of the ratio for the calibration period for each instrument.

Figure 23. Intercomparison of the original (USER, green) and the new (PMOD, red) calibration.
For some instruments a history of calibrations is available in the WCC-UV database. One example is shown here:

![Figure 24. History of the calibration factor C for a SL501 radiometer. The grey shaded area represents the expanded uncertainty of the last calibration factor (red point).](image)

Many participants sent the SRF and ARF derived from the manufacturer or from their own measurements. These data were compared - if available. The individual results of all radiometers are listed in the annex.
8. DISCUSSION

Two factors should be pointed out which dominate the quality of the final product of UV radiometers. First, the maintenance and appearance of the instrument itself and second, the calibration and data processing of the raw data. In the following these two factors are discussed.

8.1 Data processing

Since 2007 several publications give practical guides for broadband instruments measuring solar UV radiation [6,8,9]. The most important point mentioned in these investigation is that using a single calibration factor will result in very high uncertainties of the calculated solar irradiance data. However, the data of most of the participating radiometers (40 out of 75) were processed using a single calibration factor prior to the campaign. The calibration methodology for each participating radiometer can be found in Table 2.

From the variability of the normalized additional factors f_n and Coscor the resulting error can be extracted which is the consequence of the neglect of those factors in Equation 1. This will be illustrated in the following two sections.

8.1.1 Neglecting the spectral mismatch between the instrumental spectral response and the nominal response of the desired action spectrum

The three figures below show the diurnal variability on a clear sky day of the ratio broadband radiometer vs. reference data for KZ560, SL1493 and YES010938, representing the three main types of radiometers participating at the campaign. The data of the broadband radiometers were calculated using equation 6 with f_n equal to unity, i.e. neglecting the f_n. The correction function is shown in green. For this typical summer day, the maximal correction is 20% for the KZ, 10% for the SL and 10% for the YES radiometer.

![Figure 25](image-url) Diurnal variability on DOY 187, 2017, of a KZ (left), SL (middle) and YES (right) radiometer, caused by neglecting the correction matrix f_n. This function is added to the figures in green.
8.1.2 Neglecting the mismatch between the instrumental angular response and the nominal cosine response

Analog to the section before the three figures below show the diurnal variability on a clear sky day of the same data, however the data of the broadband radiometer were now calculated using equation 6 with Coscor equal to unity, i.e. neglecting the departure of the instrument angular response function from a Lambertian receiver. The cosine function is shown in green. For this typical summer day, the maximal correction is 3% for the KZ, 6% for the SL and 10% for the YES radiometer. For a diffuse sky day, the corresponding diffuse cosine correction factors are 0.97, 1.09 and 1.21, respectively.

![Figure 26. Diurnal variability on DOY 187, 2017, of a KZ (left), SL (middle) and YES (right) radiometer, caused by neglecting the cosine correction function Coscor. This function is added to the figures in green.](image)

8.2 Humidity

Humidity is the environmental factor which affects mostly the sensitivity of UV radiometers through the susceptibility of the filters used to produce the desired spectral response function. SL2839 can act as a good example to illustrate the response of an instrument from high to low humidity, i.e. the renewal of the desiccant at the beginning of the period (see figure below). Within a timescale of 20 days the calibration factor changed by 20%.
8.3 History

The calibration frequency of an instrument is an essential element in assessing the uncertainty of UV measurements. Only by knowing the instrument calibration before and after a measurement period can the data be quality assessed and produce traceable solar UV irradiance data. From the history of past calibrations, one can estimate typical degradation timescales of radiometers measuring solar UV irradiance. The following radiometers—most belong to PMOD/WRC—have been calibrated annually since 2006: SL1492, SL1493, SL1903, SL3860, KZ560, YES010938. Figure 28 shows that the calibration factors typically increase by 1.5% to 3% per year for the Solar Light radiometers, which means that the responsivity decreases by the same rate. This results in a calibration frequency of at least every four years to achieve an uncertainty less than 10%. The KZ560 shows unpredictable sensitivity changes in the order 10% between subsequent calibrations. This is probably due to high intake of humidity of the radiometer. On the opposite, SL1903 shows only a very small variability of its sensitivity. The reason is very likely the custom-made sealing of the instrument and annual nitrogen purging procedure.

The GAW-COST document from Webb et al. [8] recommends an annual recalibration because of well-known sensitivity changes of UV radiometers. The average of last calibration year for the 75 radiometers is 2012. The oldest calibration is three decades old.
8.4 Summary

To summarize – one can extract three components affecting the overall measurement uncertainty of solar UV measurements using broadband radiometers on different time scales:

- Short term (diurnal) ➔ usage of the correction factors \(f_n \) and \(\text{Coscor} \)
- Mid term (months) ➔ Control of the humidity inside the device
- Long term (years) ➔ Recalibration frequency

The reported relative expanded uncertainty of measurement of the calibration factor is stated as the standard relative uncertainty of measurement multiplied by the coverage factor \(k=2 \), which for a normal distribution corresponds to a coverage probability of approximately 95%. An uncertainty of e.g. 20% (see section 6.2) over or under estimates UV irradiance by up to this amount.
9. COMMENTS

9.1 Radiometer maintenance

The campaign was intended to investigate the performance of “reference” radiometers of UV broadband networks around the globe. In general, most of the participating devices arrived in very good shape at the WCC-UV. However, a surprisingly high number of radiometers (16 out of 75) were not well-maintained instruments. In the following a complete list of the observations is given.

1) High humidity inside the radiometer can cause transmission changes of the filter and is therefore a crucial condition for the radiometers sensitivity.
 a. Very old drying agent found for two radiometers.
 b. Visible humidity inside of one radiometer.
 c. Large sensitivity drift after the renewal of the desiccant found for three radiometers.

2) UV radiometers are temperature stabilized, because the sensitivity is a function of the filter and sensor temperature.
 a. Bad temperature stability was found for three radiometers.
 b. The temperature regulation of three radiometers didn’t work.

3) Various:
 a. Cable Code mutation found for one radiometer.
 b. Corrosion was found on
 i. two cables and
 ii. two electronic boards.
 c. Visible filter degradation in three radiometers.
 d. The dome of one radiometer was contaminated on the outside and on the inside of another radiometer.
 e. The mounting of several radiometers could not be performed according to the manufactures manual because:
 i. The mounting feet of one radiometer was missing.
 ii. The level was missing or was opaque for several instruments.

4) Three radiometers malfunctioned during the campaign and needed to be repaired.

Figure 29. Filter degradation and dome contamination of a YES radiometer
9.2 Checklist

The following questions follow the observations discussed in the previous sections and are intended as a guideline for improving the solar UV measurements from a UV monitoring station:

1. Data processing:
 - Are you using Equation 1 for the data processing?
 - YES □
 - NO □
 - Name the reasons for using a single calibration factor:
 - Real time processing □
 - Computational power □
 - Uncertainty known and accepted □
 - Unfamiliar with Equation 1 □
 - No TO3 data available □
 - No algorithm to distinguish between clear and diffuse sky conditions available □
 - ...

2. Choose the reasons for the used recalibration frequency:
 - Trust in the factory calibration □
 - Loss of data due to calibration activity □
 - Financial issues □
 - Degradation of the radiometer considered as negligible □
 - Calibration frequency □
 - ...

3. Field site environmental condition
 - Harsh (sea site, urban) □
 - Moderate (rural) □
 - Clean (mountain) □

4. Describe your maintenance procedure:
 - Cleaning frequency
 - Daily □
 - Weekly □
 - Monthly □
 - Yearly □
 - Desiccant check and replacement (if required)
 - Daily □
 - Weekly □
 - Monthly □
 - Yearly □
ACKNOWLEDGEMENTS

We would like to acknowledge the active support of the PMOD/WRC staff in the preparation and organization of the calibration campaign. The instrument owners provided the calibrated data for the intercomparison using their home calibration. Special thanks to Christian Thomann for the help in installing the radiometers and the repair of various KZ radiometers, our electronic civil servants for repairing the broken Solar Light radiometers and the staff of our administrative department for organizing the shipping of the instruments. Finally, we thank Luca Egli for his support in maintaining the reference spectroradiometers.
REFERENCES

ANNEX

INDIVIDUAL RESULTS FOR EACH INSTRUMENT PARTICIPATING IN THE SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of KZ080018 (UVG)
Calibration Results of KZ080018 (UVG)
Calibration Results of KZ000526 (UVA)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of KZ000526 (UVE)
Calibration Results of KZ000526 (UVE)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of KZ020614 (UVA)
Calibration Results of KZ020614 (UVA)
Calibration Results of KZ020614 (UVE)
Calibration Results of KZ020614 (UVE)
Calibration Results of KZ070635 (UVA)

[Graphs and diagrams showing data analysis with axes for ARF/normalised, Zenith angle, Wavelength /nm, SRF /normalized, BB Body Temperature, Ozone /DU, True

Calibration Matrix fn; Model adisorREFms2009; f0=1.8047

[Graphs and diagrams showing calibration results with axes for SZA /deg, Ozone /DU, Time /UT on days: 150-163, Range of values]
Calibration Results of KZ070635 (UVA)
Calibration Results of KZ070635 (UVE)
Calibration Results of KZ070635 (UVE)

Yearly Comparison

<table>
<thead>
<tr>
<th>Year</th>
<th>C ratio to PMOD-2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>0.94</td>
</tr>
<tr>
<td>2012</td>
<td>0.96</td>
</tr>
<tr>
<td>2013</td>
<td>0.98</td>
</tr>
<tr>
<td>2014</td>
<td>1.02</td>
</tr>
<tr>
<td>2015</td>
<td>1.04</td>
</tr>
<tr>
<td>2016</td>
<td>1.06</td>
</tr>
<tr>
<td>2017</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Time /UT on days: 151-164

<table>
<thead>
<tr>
<th>Time /UT on days: 151-164</th>
<th>C /Normalized to mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>0.95</td>
</tr>
<tr>
<td>154</td>
<td>0.96</td>
</tr>
<tr>
<td>159</td>
<td>0.97</td>
</tr>
<tr>
<td>160</td>
<td>0.98</td>
</tr>
<tr>
<td>161</td>
<td>0.99</td>
</tr>
<tr>
<td>162</td>
<td>1.00</td>
</tr>
<tr>
<td>164</td>
<td>1.02</td>
</tr>
</tbody>
</table>

SZA /deg on days: 151-164

<table>
<thead>
<tr>
<th>SZA /deg on days: 151-164</th>
<th>BB/QASUME - Calibration Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.7</td>
</tr>
<tr>
<td>30</td>
<td>0.8</td>
</tr>
<tr>
<td>40</td>
<td>0.9</td>
</tr>
<tr>
<td>50</td>
<td>1.0</td>
</tr>
<tr>
<td>60</td>
<td>1.1</td>
</tr>
<tr>
<td>70</td>
<td>1.2</td>
</tr>
<tr>
<td>80</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Time /UT on days: 150-163

<table>
<thead>
<tr>
<th>Time /UT on days: 150-163</th>
<th>C /Normalized to mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>0.7</td>
</tr>
<tr>
<td>154</td>
<td>0.8</td>
</tr>
<tr>
<td>159</td>
<td>0.9</td>
</tr>
<tr>
<td>160</td>
<td>1.0</td>
</tr>
<tr>
<td>161</td>
<td>1.1</td>
</tr>
<tr>
<td>162</td>
<td>1.2</td>
</tr>
<tr>
<td>163</td>
<td>1.3</td>
</tr>
</tbody>
</table>

SZA /deg on days: 150-163

<table>
<thead>
<tr>
<th>SZA /deg on days: 150-163</th>
<th>BB/QASUME - All Sky (No Rain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.7</td>
</tr>
<tr>
<td>40</td>
<td>0.8</td>
</tr>
<tr>
<td>50</td>
<td>0.9</td>
</tr>
<tr>
<td>60</td>
<td>1.0</td>
</tr>
<tr>
<td>70</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Distribution

<table>
<thead>
<tr>
<th>Distribution</th>
<th>BB/QASUME - All Sky (No Rain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
</tr>
</tbody>
</table>
Calibration Results of KZ080002 (UVA)
Calibration Results of KZ080002 (UVA)
Calibration Results of KZ080002 (UVE)

Calibration Matrix fn; Model sdison REFems2009; R0=-0.3446
Calibration Results of KZ080002 (UVE)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of KZ080003 (UVA)
Calibration Results of KZ080003 (UVA)
Calibration Results of KZ080003 (UVE)
Calibration Results of KZ080003 (UVE)
Calibration Results of KZ110141 (UVA)

Calibration Matrix fn; Model sdiscorREFms2009; f0=1.8171

Ozone=300DU
Range of values

SZA=40deg
Range of values

BBD Body Temperature

Time /UT on days: 182-213
Calibration Results of KZ110141 (UVA)
Calibration Results of KZ110141 (UVB)

Graphs showing various measurements and data points for calibration results, including graphs for Zenith angle, wavelength, BB Body Temperature, Ozone concentration, and Calibration Matrix function. The graphs include data for different wavelengths, SZA, and Ozone concentrations, with various lines indicating different conditions or measurements.
Calibration Results of KZ110141 (UVB)
Calibration Results of KZ120023 (UVA)
Calibration Results of KZ120023 (UVA)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of KZ120023 (UVE)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of KZ120132 (UVA)

Calibration Matrix fn; Model sdisortREFms2009; f0=1.7866
Calibration Results of KZ120132 (UVA)
Calibration Results of KZ120132 (UVB)

- Calibration Error = \(\cos \theta \)
 - PMOD: \(\cos \theta \) 0.998

- Wavelength /nm
 - 280 300 320 340 360 380 400
 - UVB: \(10^{-3} \), \(10^{-4} \), \(10^{-5} \)
 - PMOD: \(10^{-5} \), \(10^{-4} \), \(10^{-3} \)

- BB Body Temperature
 - SZA = 40\(^\circ\)
 - Range of values

- Calibration Results of KZ120132 (UVB)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of KZ120132 (UVB)
Calibration Results of KZ560 (UVE)
Calibration Results of KZ560 (UVE)
Calibration Results of KZ070642 (UVE)
Calibration Results of KZ070643 (UVE)
Calibration Results of KZ070643 (UVE)
Calibration Results of KZ080005 (UVA)
Calibration Results of KZ080005 (UVA)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of KZ100013 (UVA)
Calibration Results of KZ100013 (UVA)
Calibration Results of KZ110062 (UVA)
Calibration Results of KZ120056 (UVE)
Calibration Results of KZ120056 (UVE)

![Calibration Results Diagram](image)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017

Calibration Results of KZ120056 (UVE)

![Calibration Results Diagram](image)
Calibration Results of KZ120076 (UVB)
Calibration Results of KZ120076 (UVB)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of KZ120077 (UVB)

Calibration Matrix fn; Model adisolRIFems2009; f0=1.2652

Ozone=300DU
Range of values

SZA=40deg
Range of values

Zenith Angle /deg

Cosine Error = coscor(dir)

ARF /normalised

AVERAGE
NORTH
SOUTH
WEST
EAST
COS

Zenith Angle /deg

Time /UT on days: 182-213

BB Body Temperature

SZA /deg

Ozone /DU

SRF /normalized

Wavelength /nm

TRUE

E
/BB
E

Wavelength /nm

TRUE

E
/BB
E

Ozone /DU

Time /UT on days: 182-213
Calibration Results of KZ120077 (UVB)
Calibration Results of KZ150110 (UVE)

Calibration Matrix fn; Model sdisonREFms2009; f0=0.4722
Calibration Results of KZ150110 (UVE)
Calibration Results of KZ150124 (UVE)
Calibration Results of KZ150124 (UVE)
Calibration Results of KZ160142 (UVE)
Calibration Results of KZ160142 (UVE)
Calibration Results of KZ160158 (UVE)

- **Zenith Angle vs. ARF (Normalized)**: The plot shows a decrease in ARF as the zenith angle increases, with different labels for NORTH, SOUTH, WEST, EAST, and COS directions.

- **Cosine Error vs. Zenith Angle**: The graph illustrates the cosine error as a function of the zenith angle, with the error decreasing with increasing zenith angle.

- **Wavelength vs. SRF (Normalized)**: The SRF values are normalized across different wavelength ranges, with a range from 280 to 400 nm and values from 10^-1 to 10^-10.

- **Time/UT on days 150-163**: The graph displays the BB body temperature over time, with a range from 20 to 29 °C.

- **SZA vs. Ozone**: The SZA angle and ozone concentration are plotted with a range from 200 to 500 DU.

- **Calibration Matrix fn; Model adisonIREFms2009; f0=0.1830**: The calibration matrix is shown with ozone concentration values and SZA angles.
Calibration Results of KZ160158 (UVE)
Calibration Results of KZ160177 (UVE)

[Graphs showing various plots related to calibration results, including plots for SZA, ozone, and wavelength.]
Calibration Results of KZ160177 (UVE)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
 Calibration Results of KZ170204 (UVE)
Calibration Results of SCI00341 (UVE)

Calibration Matrix fn; Model adisorefRefms2009; f0=0.3545
Calibration Results of SCI00400 (UVA)
Calibration Results of SCI00400 (UVA)
Calibration Results of SCI00400 (UVE)

- Zenith angle vs ARF/normalised
- Cosine Error = coscor(dir)
- Wavelength vs SRF/normalized
- Time/UT on days: 182-214
- BB Body Temperature
- SZA/deg
- Ozone/DU

Calibration Matrix fn; Model sdion/REfms2009; f0=0.2352
Calibration Results of SCI00400 (UVE)

- Graphs showing data for different years and calibration results for SCI00400 (UVE).
- Graphs comparing C ratio to PMOD-2017 and C normalized to mean.
- Graphs for BB/QASUME - Calibration Days and BB/QASUME - All Sky (No Rain).

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of SCI00407 (UVE)
Calibration Results of SCI00407 (UVE)
Calibration Results of SL1453 (UVE)
Calibration Results of SL1453 (UVE)
Calibration Results of SL1492 (UVE)

Calibration Matrix fn; Model sdsonIPMODmsO3; f0=0.5635

Ozone=300DU
Range of values

SZA=40deg
Range of values

SZA/deg

SZA=80deg

Ozone /DU
Calibration Results of SL1492 (UVE)

[Graphs and plots showing data analysis results, including line graphs and scatter plots.]
Calibration Results of SL1493 (UVE)

Calibration Matrix fn; Model adison/PMODm/O3; f0=0.4860
Calibration Results of SL1493 (UVE)
Calibration Results of SL1890 (UVE)

Calibration Matrix fn; Model sdisorfREFems2009; R=0.5373
Calibration Results of SL1890 (UVE)
Calibration Results of SL1903 (UVE)
Calibration Results of SL1903 (UVE)
Calibration Results of SL2875 (UVA)

Calibration Matrix fn; Model adisor/PMODmO3; f0=1.5578
Calibration Results of SL2839 (UVE)

Calibration Matrix fn: Model adisonREFms2009; f0=0.8984

Ozone=300DU
Range of values

SZA=40deg
Range of values
Calibration Results of SL2839 (UVE)
Calibration Results of SL3564 (UVA)
Calibration Results of SL3860 (UVE)
Calibration Results of SL3860 (UVE)
Calibration Results of SL4402 (UVA)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of SL4405 (UVE)

Calibration Matrix fn; Model sdisorTRFems2009; f0=0.5684

Ozone=300 DU
Range of values 200 250 300 350 350 400 450 500

Ozone, SZA=40 deg
Range of values

Calibration Results of SL4405 (UVE)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017

129
Calibration Results of SL4405 (UVE)
Calibration Results of SL4433 (UVE)
Calibration Results of SL5760 (UVE)

[Graphs showing various calibration results and measurements]

Calibration Matrix fn; Model adisonREFms2009; I0=0.5606
Calibration Results of SL5760 (UVE)
Calibration Results of SL5790 (UVE)

Calibration Matrix fn; Model sdisortREFms2009; f0=0.6433
Calibration Results of SL5790 (UVE)
Calibration Results of SL8887 (UVE)

Calibration Matrix fn; Model sdisortREFms2009; f0=0.6002

Ozone=300DU
Range of values

SZA=40deg
Range of values

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of SL8887 (UVE)
Calibration Results of SL19474 (UVE)
Calibration Results of SL19488 (UVE)

- SRF /normalized
- ARF /normalized
- PMOD
- coscor(dir)
- coscor(glo)
- Calibrator Matrix fn; Model sdisortREFms2009; f0=0.5272
- Ozone=300DU
- Range of values
- BB Body Temperature
- SZA /deg
- Ozone /DU
- Time /UT on days: 172-215
- Calibration Results of SL19488 (UVE)
Calibration Results of SL19488 (UVE)
Calibration Results of SL19507 (UVE)

Calibration Matrix fn; Model sdison\text{REFms2009}; f0=0.6467
Calibration Results of SL19507 (UVE)
Calibration Results of SL23148 (UVE)

Calibration Matrix fn; Model sdsonREFms2009; l0b=0.4674
Calibration Results of SL23148 (UVE)
Calibration Results of SL0922 (UVE)
Calibration Results of SL0936 (UVE)
Calibration Results of SL0936 (UVE)
Calibration Results of SL1119 (UVE)

Calibration Matrix fn; Model sdisorARFms2009; f0=0.6097
Calibration Results of SL1119 (UVE)
Calibration Results of SL2733 (UVE)

Calibration Matrix fn; Model sdisonREFms2009; f0=0.5746

Ozone=300DU
Range of values
Calibration Results of SL2733 (UVE)
Calibration Results of SL4811 (UVE)
Calibration Results of SL4811 (UVE)
Calibration Results of SL4834 (UVE)
Calibration Results of SL4834 (UVE)
Calibration Results of SL10403 (UVE)
Calibration Results of SL10403 (UVE)
Calibration Results of SL14078 (UVE)
Calibration Results of SL14078 (UVE)
Calibration Results of SL16721 (UVE)

Calibration Matrix fn; Model sdisonREFms2009; f0=0.3736

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of SL16721 (UVE)
Calibration Results of YES000904 (UVE)
Calibration Results of YES000904 (UVE)
Calibration Results of YES010938 (UVE)
Calibration Results of YES030520 (UVE)
Calibration Results of YES030520 (UVE)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of YES030525 (UVB320)
Calibration Results of YES030525 (UVB320)
Calibration Results of YES090703 (UVB320)
Calibration Results of YES921106 (UVB)
Calibration Results of YES921106 (UVB)
Calibration Results of YES921116 (UVE)

Calibration Matrix fn; Model sdisorRefms2009; Itb=0.2525
Calibration Results of YES921116 (UVE)
Calibration Results of YES930204 (UVB)
Calibration Results of YES930204 (UVB)
Calibration Results of YES960819 (UVB)
Calibration Results of YES990608 (UVE)

Calibration Matrix fn; Model adisonREMs2009; f0=0.2407
Calibration Results of YES990608 (UVE)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017
Calibration Results of YES990703 (UVB320)
Calibration Results of YES990703 (UVB320)
Calibration Results of DELTA15010872 (UVE)

No Temperature Reading

Calibration Matrix fn; Model adisonRIFems2009; f0=1.8656
Calibration Results of DELTA15010872 (UVE)
Calibration Results of DELTA17010973 (UVE)
Calibration Results of IS1268817 (UVE)

![Graph 1: Zenith angle vs. ARF normalized]

![Graph 2: Zenith angle vs. ARF normalization by direction]

![Graph 3: Wavelength vs. SRF normalized]

No Temperature Reading

Calibration Matrix fn; Model sdisortREFms2009; f0=1.1610

Calibration Results of IS1268817 (UVE)

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017

191
Calibration Results of IS1268817 (UVE)
Calibration Results of GENIC586 (UVE)

![Graphs showing calibration results with various axes and data points.]

No Temperature Reading

Calibration Matrix fn: sdisort REFms2009; f0=0.2271
Calibration Results of GENIC586 (UVE)
Calibration Results of EPPLEY26919 (UV290385)
Calibration Results of EPPLEY26919 (UV290385)
Calibration Results of EKO1113204 (UVE)
Calibration Results of EKO1113204 (UVE)
Calibration Results of EKO1700802 (UVB)

Calibration Matrix fn: Model adisonIREFms2009; f0=1.5770

Ozone=300DU

Range of values

SZA=40deg

Range of values
Calibration Results of EKO1700802 (UVB)
Calibration Results of MS5089 (UVB)

![Graphs showing calibration results](image)

Calibration Matrix fn; Model sdsonRefms2009; r0.58418

SECOND INTERNATIONAL UV FILTER RADIOMETER CALIBRATION CAMPAIGN UVC-II
DAVOS, SWITZERLAND, 25 MAY-5 OCTOBER 2017

201
Calibration Results of MS5089 (UVB)
LIST OF RECENT GAW REPORTS*

238. The Magnitude and Impacts of Anthropogenic Atmospheric Nitrogen Inputs to the Ocean, Reports and Studies GESAMP No. 97, 47 pp., 2018.

229. 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), La Jolla, CA, USA, 13-17 September 2015, 150 pp., 2016.

223. Eighth Intercomparison Campaign of the Regional Brewer Calibration Center for Europe (RBCC-E), El Arenosillo Atmospheric Sounding Station, Heulva, Spain, 10-20 June 2013, 79 pp., December 2015.

* A full list is available at:
http://www.wmo.int/pages/prog/arep/gaw/gaw-reports.html
http://library.wmo.int/opac/index.php?lvl=etagere_see&id=144#.WK2TTBiZNB
For more information, please contact:

World Meteorological Organization
Research Department
Atmospheric Research and Environment Branch
7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland
Tel.: +41 (0) 22 730 81 11 – Fax: +41 (0) 22 730 81 81
Email: GAW@wmo.int

Website: http://www.wmo.int/pages/prog/arep/gaw/gaw_home_en.html